west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑源性神经营养因子" 17 results
  • LEARNING AND MEMORY AMELIORATION OF TRANSPLANTATION OF THE NEURAL STEM CELLS MODIFIED WITH HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE ON ALZHEIMERDISEASE MODEL RAT

    Objective To investigate the memory amelioration of the Alzheimer disease (AD)model rat after being transplanted the single neural stem cells(NSC) and NSC modified with human brain-derived neurotrophic factor(hBDNF) gene. Methods Forty SD rats were divided evenly into 4 groups randomly. The AD model rats were made by cutting unilaterallythe fibria fornix of male rats. Ten to twelve days after surgery, the genetically modified and unmodified NSC were implanted into the lateral cerebral ventricle of group Ⅲ and group Ⅳ respectively. Two weeks after transplantation, theamelioration of memory impairment of the rats was detected by Morris water maze. Results The average escaping latency of the group Ⅲ and group Ⅳ (41.84±21.76 s,25.23±17.06 s respectively) was shorter than that of the group Ⅱ(70.91±23.67 s) (Plt;0.01). The percentage of swimming distance inthe platform quadrant in group Ⅲ (36.9%) and in group Ⅳ(42.0%) was higherthan that in the group Ⅱ(26.0%) (Plt;0.01). More marginal and random strategies were used in group Ⅱ.The percentage of swimming distance in the platform quadrant in group Ⅳ was also greater than that in group Ⅲ(Plt;0.05). There were no significant differences in the average escaping latency, the percentage of swimming distance in the platform quadrant and the probe strategy between group Ⅳ and group Ⅰ(Pgt;0.05).More lineal and oriented strategies were used in group Ⅳ. Conclusion The behavioral amelioration of AD model rat was obtained by transplanting single NSC and hBDNF-gene-modified NSC. The effect of the NSC group modified with hBDNF gene is better than that of the groupⅢ.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • Systemic and ocular transplantation of human umbilical cord mesenchymal stem cells into rats with diabetic retinopathy

    ObjectiveTo observe the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) on blood glucose levels and diabetic retinopathy in diabetes mellitus (DM) rats. MethodA total of 45 healthy male Sprague-Dawley rats were randomly divided into normal control group (group A, 10 rats) and DM group (33 rats). Diabetic model was established in DM group by tail vein injection of streptozotocin.The DM group was further randomly divided into 3 groups (11 rats in each group), including group B (no transplantation), group C (hUCMSC was injected through tail vein) and group D (hUCMSC was injected into the vitreous). Blood glucose, retina wholemont staining and expression of brain derived neurotrophic factor (BDNF) in the retina were measured at 2, 4, 6, 8 weeks after hUCMSC injection. The blood glucose was significantly different between A-D groups before injection (t=-64.400, -60.601, -44.065, -43.872; P=0.000) BDNF expression was studied by real time fluorescence quantitative polymerase chain reaction (RT-PCR) and immunohistochemistry staining. ResultsThe blood glucose was significantly different between A-D groups after hUCMSC injection (F=400.017, 404.410, 422.043, 344.109; P=0.000), and between group C and group B/D (t=4.447, 4.990; P < 0.01). Immuno-staining shown that BDNF was positive in ganglion cell layer (RGC) of group A, weak in group B while BDNF expression increased in group C/D. BDNF mRNA expression was significantly different between group B, C and D at 4, 6 and 8 weeks after hUCMSC injection (F=29.372, 188.492, 421.537; P=0.000), and between group B and C/D (t=66.781, 72.401, 63.880, 88.423, 75.120, 83.002; P < 0.01) by RT-PCR analysis. The BDNF mRNA expression was significantly different between C and D groups only at 8 weeks after hUCMSC injection (t=127.321, P=0.005). ConclusionsTail vein injection of hUCMSCs can significantly reduce the blood glucose levels of rats. Intravenous and intravitreal injection of hUCMSCs can increase the expression of BDNF.

    Release date: Export PDF Favorites Scan
  • 重组逆转录病毒脑源性神经营养因子在小鼠胚胎细胞中的表达

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • The Effect of Atorvastatin on Braindeprived Neurotrophic Factor in Rats with Cerebral Infarction

    摘要:目的:观察阿托伐他丁对脑梗死大鼠脑保护的作用以及对脑源性神经营养因子(braindeprived neurotrophic factor,BDNF)的影响。方法: 线栓法制备SD大鼠大脑中动脉梗死(middle cerebral artery occlusion,MCAO)再灌注模型。将大鼠随机分为:假手术组;MCAO组的2 h、24 h、3 d、5 d组;阿托伐他丁组的2 h、24 h、3 d、5 d组。MCAO组和阿托伐他丁组的各时程组再分别分为脑梗死体积亚组、免疫组化亚组,每亚组及假手术组各6只大鼠。在不同时间点观察阿托伐他丁组和MCAO组大鼠神经行为评分、脑梗死体积,用免疫组化法检测BDNF阳性细胞数。结果: 神经行为评分和脑梗死体积在阿托伐他丁组和MCAO组的2 h组之间无显著性差异(Pgt;0.05),在阿托伐他丁24 h、3 d、5 d组均显著低于对应时程的MCAO组(Plt;0.05);各组缺血半暗带BDNF阳性细胞数均增高,但阿托伐他丁组的阳性细胞数显著高于对应时程的MCAO组(Plt;0.05)。结论:阿托伐他丁能提高大鼠局灶脑缺血半暗带BDNF的表达水平,促进神经元的修复。Abstract: Objective: To observe the effect of atorvastatin in cerebral protection and braindeprived neurotrophic factor(BDNF) in rats. Methods: Ischemic reperfusion model of rats as established by an intraluminal filament and recirculation at different time point respectively. One hundred and two healthy SD rats were randomly assigned into three groups for different preconditioning, including the sham surgery group (SS, n=6), the sham and middle cerebralartery occlusion (MCAO) group (MCAO, n=48), and the atorvastatin and MCAO group (atorvastatin +MCAO, n=48). The latter two groups were further divided into two subgroups on different time points of tests. Each subgroup hase six rats. In the atorvastatin +MCAO group, intragastric administration of atorvastatin was given for five days, then the MCAO followed. In the MCAO group, the MCAO was given directly. The neurophysical marks and the volume of the cerebral infarction in atorvastatin group and MCAO group were determined at different time point. The expression of BDNF was valued by immunohistochemitry respectively. Results: At 2 h, there were no differences in the neurophysical marks and volume of the cerebral infarction between atorvastatin group and MCAO group (Pgt;0.05). At 24 h,3 d,5 d, the neurophysical marks and volume of the cerebral infarction of atorvastatin group were lower than that of MCAO group in the corresponding time (Plt;0.05). Around the necrotic areas,BDNF positive neurons were increased in both groups, but they were higher in atorvastatin group than in MCAO group in the corresponding time (Plt;0.05). Conclusion: Atorvastatin could increase the expression level of BDNF and promote the ischemic neuron to revive.

    Release date:2016-08-26 03:57 Export PDF Favorites Scan
  • WONOEP评价:癫痫的分子和细胞生物标记物

    外周生物标志物具有许多潜在用途,可用于癫痫的治疗、预测、预后和药物安全监视作用。目前为止,虽然多个候选标记物在研究中,但还没有单一的外周生物标记物已经证明有效。文章中讨论的重点领域,包括炎症、血脑屏障功能障碍、氧化还原改变、代谢、激素和生长因子。

    Release date:2017-05-24 05:46 Export PDF Favorites Scan
  • 靶向脑源性神经营养因子/酪氨酸激酶 B 信号通路对癫痫的抑制

    创伤性脑损伤(Traumatic brain injury,TBI)和癫痫持续状态(Status epilepticus,SE)皆与人类癫痫的发生发展密切相关。虽病因不同,但目前的研究表明,这些损伤后癫痫发生的分子机制趋于一致。其中一个机制涉及脑源性神经营养因子(Brain-derived neurotrophic factor,BDNF)及其高亲和力受体酪氨酸激酶 B(Tropomyosin related kinase B,TrkB)。文章总结了 BDNF / TrkB 信号通路在癫痫发展中所起的病理生理学作用。轴突横断模型和 SE 动物模型分别模拟了人类 TBI 和 SE 后诱发的癫痫,在这两种动物模型的研究基础上,讨论了靶向 BDNF/TrkB 信号通路以减少癫痫发作及其导致的神经损伤的策略。

    Release date:2020-07-20 08:13 Export PDF Favorites Scan
  • Research progress on the effect of transcranial magnetic stimulation on learning, memory and plasticity of brain synaptic

    Transcranial magnetic stimulation (TMS) as a noninvasive neuromodulation technique can improve the impairment of learning and memory caused by diseases, and the regulation of learning and memory depends on synaptic plasticity. TMS can affect plasticity of brain synaptic. This paper reviews the effects of TMS on synaptic plasticity from two aspects of structural and functional plasticity, and further reveals the mechanism of TMS from synaptic vesicles, neurotransmitters, synaptic associated proteins, brain derived neurotrophic factor and related pathways. Finally, it is found that TMS could affect neuronal morphology, glutamate receptor and neurotransmitter, and regulate the expression of synaptic associated proteins through the expression of brain derived neurotrophic factor, thus affecting the learning and memory function. This paper reviews the effects of TMS on learning, memory and plasticity of brain synaptic, which provides a reference for the study of the mechanism of TMS.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
  • Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury

    ObjectiveTo evaluate the effect of the combination of collagen scaffold and brain-derived neurotrophic factor (BDNF) on the repair of transected spinal cord injury in rats.MethodsThirty-two Sprague-Dawley rats were randomly divided into 4 groups: group A (sham operation group), T9, T10 segments of the spinal cord was only exposed; group B, 4-mm T9, T10 segments of the spinal cord were resected; group C, 4-mm T9, T10 segments of the spinal cord were resected and linear ordered collagen scaffolds (LOCS) with corresponding length was transplanted into lesion site; group D, 4-mm T9, T10 segments of the spinal cord were resected and LOCS with collagen binding domain (CBD)-BDNF was transplanted into lesion site. During 3 months after operation, Basso-Beattie-Bresnahan (BBB) locomotor score assessment was performed for each rat once a week. At 3 months after operation, electrophysiological test of motor evoked potential (MEP) was performed for rats in each group. Subsequently, retrograde tracing was performed for each rat by injection of fluorogold (FG) at the L2 spinal cord below the injury level. One week later, brains and spinal cord tissues of rats were collected. Morphological observation was performed to spinal cord tissues after dehydration. The thoracic spinal cords including lesion area were collected and sliced horizontally. Thoracic spinal cords 1 cm above lesion area and lumbar spinal cords 1 cm below lesion area were collected and sliced coronally. Coronal spinal cord tissue sections were observed by the laser confocal scanning microscope and calculated the integral absorbance (IA) value of FG-positive cells. Horizontal tissue sections of thoracic spinal cord underwent immunofluorescence staining to observe the building of transected spinal cord injury model, axonal regeneration in damaged area, and synapse formation of regenerated axons.ResultsDuring 3 months after operation, the BBB scores of groups B, C, and D were significantly lower than those of group A (P<0.05). The BBB scores of group D at 2-12 weeks after operation were significantly higher than those of groups B and C (P<0.05). Electrophysiological tests revealed that there was no MEP in group B; the latencies of MEP in groups C and D were significantly longer than that in group A (P<0.05), and in group C than in group D (P<0.05). Morphological observation of spinal cord tissues showed that the injured area of the spinal cord in group B extended to both two ends, and the lesion site was severely damaged. The morphologies of spinal cord tissues in groups C and D recovered well, and the morphology in group D was closer to normal tissue. Results of retrograde tracing showed that the gray matters of lumbar spinal cords below the lesion area in each group were filled with FG-positive cells; in thoracic spinal cords above lesion sites, theIA value of FG-positive cells in coronal section of spinal cord in group A was significantly larger than those in groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Immunofluorescence staining results of spinal cord tissue sections selected from dorsal to ventral spinal cord showed transected injured areas of spinal cords which were significantly different from normal tissues. The numbers of NF-positive axons in lesion center of group A were significantly larger than those of groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), and in group D than in group C (P<0.05).ConclusionThe combined therapeutic approach containing LOCS and CBD-BDNF can promote axonal regeneration and recovery of hind limb motor function after transected spinal cord injury in rats.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • Construction, identification and application of fusion plasmid of brainderived neurotrophic factorgreen fluorescent protein

    Objective To construct expression plasmid of the fusion protein of brainderived neurotrophic factor (BDNF)green fluorescent protein (GFP), and observe its characteristics.Methods BDNF cDNA segment was inserted into plasmid pcDNA3.1/ NT-GFP-TOPO and in the same reading frame with GFP. After verified by sequencing, the BDNFGFP plasmid was transferred into cultured Schwann cells by electroporation. And the expression of BDNFGFP fusion protein was observed by immunohistochemistry and Western blotting. The neuralprotective function of the fusion protein was evaluated by transferring the plasmid into adult rat retinas with transected optic nerve.Results The sequence of BDNFGFP plasmid was verified correctly by autosequencing. The results of Western blotting showed that the BDNF-GFP fusion protein expressed a brand with the relative molecular mass of 41times;103. Seven days after the optic nerve was transected, the number of survival retinal ganglion cells (RGC) in BDNF-GFP group and GFP group was (1201plusmn;286) and(482plusmn;151)cells/mm2, respectively; and the survival rate was (51.39plusmn;12.24)% and (20.62plusmn;6.46)% , respectively. Twentyeight days after the optic nerve was transected, the number of survival RGC in the two groups was (715plusmn;71) and (112plusmn;24)cells/mm2, respectively; the survival rate was(30.59plusmn;3.04)% and (4.79plusmn;1.03)% respectively. The differences of the survival rate of RGC between the two groups were significant (t=3.144,11.378;Plt;0.01).Conclusion BDNF-GFP fusion plasmid can express a fusion protein which emit green fluorescence and has the biological activity of BDNF.

    Release date:2016-09-02 05:43 Export PDF Favorites Scan
  • Protection of retinal ganglion cells from optic nerve injury by brainderived neurotrophic factor transfected through microbubble contrast agent into the retina and visual cortex

      Objective To observe the protective effect of ultrasound microbubble contrast agentmediated transfection of brain-derived neurotrophic factor(BDNF) into the retina and visual cortex on retinal ganglion cells (RGC) after optic nerve injury. Methods A total of 88 male Sprague-Dawley (SD) rats were randomly divided into normal group (group A, eight rats), sham operation group (group B, 16 rats), control group (group C, 16 rats), eyes transfection group (group D, 16 rats), brain transfection group (group E, 16 rats), combined transfection group (group F, 16 rats). The optic nerve crush injury was induced, and then the groups B to F were divided into one-week and two-week after optic nerve injury subgroup with eight rats each, respectively. The rats in group B and C underwent intravitreal and visual cortex injection with phosphate buffered solution respectively. The rats in group D and E underwent intravitreal and visual cortex injection with the mixture solution of microbubbles and BDNF plasmids respectively. The rats in group F underwent both intravitreal and visual cortex injection with the mixture solution of microbubbles and BDNF plasmids at the same time. The ultrasound exposure was performed on the rats in group D to F after injection with the mixture solution of microbubbles and BDNF plasmids. One and two weeks after optic nerve injury, RGC were retrogradely labeled with Fluorogold; active caspase-3 protein was observed by immunohistochemistry and the N95 amplitude was detected by pattern electroretinogram (PERG). Results Golden fluorescence can be observed exactly in labeled RGC in all groups,the difference of the number of RGC between the six groups and ten subgroups were significant(F=256.30,65.18;P<0.01). Active caspase-3 in ganglion cell layer was detected in group C to F, but not in group A and B. The difference of the N95 amplitude between the six groups and ten subgroups were significant(F=121.56,82.38;P<0.01).Conclusion Ultrasound microbubble contrast agent-mediated BDNF transfection to the rat retina and visual cortex can inhibit the RGC apoptosis after optic nerve injury and protect the visual function.

    Release date:2016-09-02 05:37 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content