Objective To investigate the distribution of the perforating branches artery of distally-based flap of sural nerve nutrient vessels and its clinical application. Methods The origins and distribution of perforating branchesartery of distally-based flap were observed on specimens of 30 adult cadavericlow limbs by perfusing red gelatin to dissect the artery.Among the 36 cases, there were 21 males, 15 females. Their ages ranged from 6 to 66, 35.2 in average. The defect area was 3.5 cm×2.5 cm to 17.0 cm×11.0 cm. The flap taken ranged from 4 cm×3 cm to 18 cm×12 cm. Results The perforating branches artery of distally-based flap had 2 to 5 branches and originated from the heel lateral artery, the terminal perforating branches of peroneal artery(diameters were 0.6±0.2 mm and 0.8±0.2 mm, 1.0±1.3 cm and 2.8±1.0 cm to the level of cusp lateral malleolus cusp).The intermuscular septum perforating branches of peroneal artery had 0 to 3 branches. Their rate of presence was 96.7%,66.7% and 20.0% respectively(the diameters were 0.9±0.3, 1.0±0.2 and 0.8±0.4 mm, andtheir distances to the level of cusp of lateral malleolus were 5.3±2.1, 6.8±2.8 and 7.0±4.0 cm). Those perforating branches included fascia branches, cutaneous branches, nerve and vein nutrient branches. Those nutrient vessels formed longitudinal vessel chain of sural nerve shaft, vessel chain of vein side and vessel network of deep superficial fascia. The distally-based superficial sural artery island flap was used in 18 cases, all flaps survived. Conclusion Distally-based sural nerve, small saphenous vein, and nutrient vessels of fascia skin have the same origin. Rotation point of flap is 3.0 cm to the cusp of lateral malleolus, when the distally-based flap is pedicled with the terminal branch of peroneal artery.Rotation point of flap is close to the cusp of lateral malleolus, when the distally-based flap is pedicled with the heel lateral artery.
Objective To investigate the clinical significance of the distally-based sural musculocutaneous flap for the treatment of chronic calcaneal osteomyelitis. Methods From January 2002 to October 2005, 7 patients (4 males, 3 females; age range, 15-68 years ) were treated with the distallybased sural musculocutaneous flap, who had chronic calcanealosteomyelitis after calcaneal fracture. After the radical debridement for all the nonviable and poorly vascularized tissues, all the chronic calcaneal osteomyelitis patients, who had suffered from open calcaneal fracture or closed calcaneal fracture, were treated with the open reduction, the internal fixation, and thebone graft. The ulcer lasted for 3-12 months before diagnosis of osteomyelitis. The musculocutaneous flaps ranged in size from 8 cm×4 cm to 12 cm×7 cmand the muscle flaps ranged from 4 cm×3 cm to 6 cm×5 cm. The donor defects were closed primarily in 5 patients and were resurfaced with the splitthicknessskin graft in 2 patients. Results All the musculocutaneous flaps survived completely and all the wounds healed smoothly. All the patients followed up for 2-6 months had no recurrence of osteomyelitis or return to their preoperative ambulatory status.Conclusion It is feasible to use the distallybased sural musculocutaneous flap for treatment of chronic calcaneal osteomyelitis.
Objective To establ ish the experimental animal model of perforator sural neurocutaneous flap for laying a foundation of further study on its physiology and haemodynamics. Methods Thirty-five New Zealand rabbits were divided into four groups, weighing 2.5-3.0 kg and being male or female. In group A (n=5), vivisection was performed to observe thestarting point and arrangement of sural nerve, its concomitant vessels, posterior tibial artery and perforating vessel. In groups B and C (n=5), red latex and gelatin-lead oxide were injected into the concomitant arteries of sural nerve and the posterior tibial arteries respectively to observe their arrangement, the diameter and anatomasis. In group D, forty neurocutaneous flaps based on single perforator were elevated in the twenty rabbits with a size of 7 cm × 1 cm and a pedicle of 0.5 cm. The colour and condition of flaps were observed. Results The sural nerve originated from posterior tibial nerve, passed through the lateral head of the gastrocnemius at site of the popl iteal fossa, descended obl iquely to exterior, entered in the deep fascia at about (5.42 ± 0.15) cm above lateral malleolus, and descended vertically to lateral malleolus. Its concomitant artery originated from deep femoral artery with an initial diameter of (0.73 ± 0.11) mm and extended to the lateral malleolus along the sural nerve. A perforating branch of posterior tibial artery at the position of the calcaneus originated from the midpoint of the l ine connecting between the medial malleolus and the calcaneus with an initial diameter of (0.45 ± 0.01) mm. The perforating branch traversed the calcaneus to the region of the lateral malleolus, and anastomosed to the concomitant artery of the sural nerve, forming a vascular plexus around the sural nerve. In group D, two cases were excluded due to infection. The survival rate was 78.0% ± 1.5% in other 38 flaps 10days after operation. Conclusion The perforator based sural neurocutaneous flap in rabbit is a good experimental model,which has stable anamatic features and rel iable blood distribution.
Objective To explore the application of the improved operative technique and clinical results of sural nerve nutritional vessel axial flap repairing the soft tissue defects of the lower leg,the ankle and the foot. Methods From January 1999 to Novenber 2004,the modified flaps were applied in 22 cases of soft tissue defect on the basis of anatomy of the intermusclar septum perforating branches of peroneal artery and the sural nerve nutritional vessel.There were 14 males and 8 females. Their ages ranged from 5 to 54 years.According to the position and size of the soft tissue defects, the sural nerve nutritional vessel flap pedicled with the perforating branch of the peroneal artery in the lower leg were desingned and obtained to repair the soft tissue defects of the lower leg,the ankle and the foot.The flap size ranged from 13cm×12cm to 30cm×20cm. The vessel pedicle of perforating branches ranged from 1.7cm to 3cm.The distribution of the vessel pedicle of perforating branches ranged from4.5cm to 8cm on the lateral malleolus.The diameters of vessel ranged from 1mm to 1.2mm. Results The flap pedicle with the terminal branch of the peroneal artery was used in 13 cases, the other branches were used in 9 cases. Among of 22 cases,the sural nerve were anastomosed with the acceptor sensory nerve in 4 cases. The skin sense were satisfactory after 1 year of operationnd 2-point discrimination was 10-13mm. All flaps survived completely in 22 cases. The outline andfunction were satisfactory during 6-18 months follow-up. Conclusion The blood supply of this flap is reliable. Flap elevation is easy. The size of flap is large enough to repair skin defects of the lower leg, the ankle and the foot.
Objective To explore the effectiveness of changeable cross-leg style sural neurovascular flap in repairing contralateral fairly large soft tissue defects on dorsum of forefoot. Methods Between June 2006 and June 2015, 12 patients with fairly large soft tissue defect on dorsum of forefoot were treated. There were 8 males and 4 females, with an average age of 35.6 years (range, 18-57 years). Defects were caused by traffic accident injury in 4 cases, machine crush injury in 3 cases, and heavy object crush injury in 3 cases, with a median disease duration of 11 days (range, 5 hours to 28 days) in the 10 cases; the defect cause was atrophic scar in 2 cases, with disease duration of 2 years and 3 years respectively. The wound size of soft tissue ranged from 6.2 cm×4.1 cm to 11.5 cm×7.4 cm; combined injuries included tendon exposure in all cases and bone exposure in 6 cases. The changeable cross-leg style sural neurovascular flaps were used to repair defects. The width and length of flap pedicle were increased. The cross-leg position was maintained with the elastic net bandage. The size of flaps was 16 cm×7 cm to 21 cm×11 cm, with a pedicle of 8-16 cm in length and 5-6 cm in width. Results After operation, 10 flaps survived, and wound healed by first intention. Extravasated blood occurred at the flap edge in 2 cases and was cured after symptomatic treatment. No pressure sore occurred. All patients were followed up 3-24 months (mean, 7 months). The appearance and function of the affected legs were good, and the flaps had soft texture and normal color. Conclusion Changeable cross-leg style sural neurovascular flap can achieve good effectiveness in repairing fairly large soft tissue defect on dorsum of forefoot. Some drawbacks of single cross-leg style can be avoided.