Objective To summarize the cl inical experience of repairing soft tissue defect in dorsal pedis with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flap, and to explore surgery matters needingattention and measures to prevent flap necrosis. Methods Between August 2000 and April 2009, 31 patients with soft tissue defects in dorsal pedis were treated with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps. There were 23 males and 8 females with a median age of 34 years (range, 3-65 years). Defects were caused by traffic accident in 20 cases, by machine in 2 cases, and by crush in 2 cases. The time from injury to admission was 1-32 days (mean, 15 days). And 6 cases had chronic ulcer or unstable scar excision with disease duration of 6 months to 10 years, and 1 case had squamous carcinoma with disease duration of 5 months. The wounds were located in medial dorsal pedis in 12 cases and lateral dorsal pedis in 19 cases; including 14 wounds near the middle metatarsal and 17 wounds beyond the middle metatarsal (up to the metatarsophalangeal joint in 10 cases). All cases accompanied with bone or tendon exposure. Five cases accompanied with long extensor muscle digits tendon rupture and defect, 1 case accompanied with talus fracture, 1 case accompanied with talus fracture and third metatarsal fracture. The size of the wounds ranged from 6.0 cm × 4.5 cm to 17.0 cm × 10.0 cm. The size of the flaps ranged from 8.0 cm × 5.5 cm to 20.0 cm × 12.0 cm. The donor sites were resurfaced by skin graft. Results Seventeen flaps survived uneventfully, wounds healed by first intention. Distal epidermal or superficial necrosis occurred in 6 flaps at 5-12 daysafter operation, wounds healed by dressing change or skin graft. Distal partial necrosis occurred in 8 flaps (7 in medial dorsal pedis and 1 in lateral dorsal pedis) at 7-14 days after operation, wounds healed by skin graft in 3 cases, by secondary suture in 3 cases, by local flap rotation in 1 case, and by cross leg flap in 1 case. All skin grafts at donor sites survived uneventfully, wounds healed by first intention. Twenty-nine patients were followed up 6-29 months (mean, 19 months). The appearance was sl ightly overstaffed, but wearing shoe function and gait were normal. The texture and color of the flaps in all cases were good. There was no pigmentation and suppuration relapse. There was neither ankle plantar flexion deformity nor hammer toe deformity in 5 cases accompanied with long extensor muscle digits tendon rupture and defect. All fractures healed at 3 months after operation in 2 cases. Conclusion The reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps are suitable to repair most soft tissue defects in lateral dorsal pedis. When the flaps are used to repair soft tissue defects in medial dorsal pedis, avoiding tension in flaps and fascia pedicles should be noted so as to improve flap survival.
Objective To provide the anatomic basis for thedesign of the intermediate dorsal neurocutaneous flap on the foot and to reportthe clinical results. Methods On 32 adult cadaver lower limb specimens perfused with red latex, the origins, diameters, courses, branches, and distributions of the intermediate dorsal cutaneous nerve of the foot and its nutrient vessels were observed. On this anatomic basis, from June 2004 to October2005, 5 flaps were developed and applied to the repair of the soft tissue defect in the feet of 4 patients. Results The intermediate dorsal cutaneous nerve of the foot was found to arise from the superficial peroneal nerve. Crossing the intermalleolar line, it was located 1.3±0.6 cm lateral to the midpoint of the line with a diameter of 2.05±0.56 mm. The nerve stem divided into branches 2.8±1.3 cm distal to the line. They distributed the dorsal skin of the second, third and fourth metatarsal and toe. On average, 5.1 perforators per specimen were identified. At least 3 nutrient vessels were always found in each. They originated from the cutaneous branches of the anterior tibial artery and the dorsalis pedis artery in the proximal end and the dorsalis metatarsal artery in the distal end. They perforated the deep fascia 4.3±0.4 cm proximal to the intermalleolar, 1.6±0.3 cm proximal to the tip of the third toe webspace and 1.5±0.3 cm proximal to the tip of the forth toe webspace, respectively. The external diameters of them were 0.82±0.13, 0.42±0.07 and 0.49±0.09 mm, respectively. The patients were followed up for 4-10 months. All theflaps survived completely. Their appearance and function were satisfactory. Conclusion The distallybased intermediate dorsal neurocutaneousflap on the foot has an abundant blood supply. This kind of flap is especially useful in repair of the soft tissue defect in the foot.
Objective To investigate the management of the soft tissue defect after the Achilles tendon repair. Methods From April 1996 to April 2006, 24 patients(17 males, 7 females; aged 16-59 years), who suffered from postoperative Achilles tendon exposure caused by local soft-tissue necrosis after the Achilles tendon repair, were treated and evaluated. Of the 24patients, 8 had an original open injury (machinecrush injury in 2 patients, heavy-object press injury in 3, motorcycle wheel crush injury in 3) and 16 patients had a closed injury (sports injury). In their treatment, the transferof the sural neurovascular flap was performed on 8 patients and the transfer ofthe saphenous neurovascular flap was performed on 3 patients. The secondary Achilles tendon repair was performed on 13 patients before the neurovascular flap transfer was performed. The time between the injury and the operation was 9-76 days, and the time between the Achilles tendon expousure and the operation was 3-65 days. Results All the flaps survived and the Achilles tendon exposure was well covered by the flaps of good texture. Eighteen patients followed up for 6 months to 24 months had no flap complication, and the two point discrimination of the flaps was 12-20 mm. The AOFASAnkleHindfoot Scale assessment revealed that 8 patients had an excellent result, 6 had a good result, 3 had a fair result, and just 1 had a poor result, with theexcellent and good results accounting for 77.8%. Sixteen patients (89%) were able toperform a tip-toe stance on their operative sides, and only 3 of them complained a loss of plantarflexion strength. However, 2 patients still could not perform the tip-toe stance. Conclusion The Achilles tendon repair, ifnot well performed, can result in the local soft-tissue necrosis and the subsequent Achilles tendon exposure. If those complications occur, the neurovascular flap transfer should be performed as soon as possible; if necessary, the secondary Achilles tendon repair should be performed, too.
Objective To investigate the operative techniques and cl inical results of sural neurocutaneous vascular flap pedicled on the relatively higher and main perforating branch of peroneal artery in repairing small and medium-sized soft tissue defects in ankle. Methods From July 2004 to February 2007, 14 patients (9 males and 5 females, aged 19-53 years) withsmall and medium-sized soft tissue defects in ankle were treated, including 4 cases of skin necrosis caused by surgery for achilles tendon rupture, 3 soft tissue defects due to car accident, 2 crush injury due to fall ing heavy objects, 2 chronical infectious ulcer, 2 skin necrosis cuased by surgery for calcaneus fracture and 1 melanoma resection in heel. Ranging from 4 cm × 2 cm to 9 cm × 5 cm and combing with exposure of either tendon or bone, the defects were in ankle areas (12 cases) and weight-bearing heel (2 cases). The time from injury to hospital ization was 12 days to 13 months, except 3 cases of emergency hospital ization. After thorough debridement, the sural neurocutaneous vascular flaps (13 cm × 5 cm - 36 cm × 6 cm ) pedicled on the perforating branch of peroneal artery was harvested to repair the defects. The donor sites were sutured directly. Results Postoperatively all the flaps survived, and all the donor sites and wounds healed by first intention. Over a 7-23 month follow-up period, the texture, appearance and color of the flaps in all cases were good, with two-point discrimination of 7-12 mm.The function of ankle obtained satisfactory recovery with normal in-shoe gait. Conclusion With a rel iable blood supply, simple operative procedure, sound repair of wound and satisfactory recovery of l imb function, the sural neurocutaneous vascular flap pedicled on the relatively higher and main perforating branch of peroneal artery is appl icable for the repair of small and medium-sized defects in the ankle and weight-bearing area of heel, especially for patients who have no satisfactory perforating branch in lower position.
Objective To investigate the surgical methods and cl inical results of reconstructing soft tissue defects in distal dorsal is pedis with distally based medial dorsal neurocutaneous flap on foot. Methods From January 2004 to July 2007, 11 cases of soft tissue defects in distal dorsal is pedis were treated with the distally based medial dorsal neurocutaneousflap on foot, including 8 males and 3 females aged 18-55 years. Nine cases were caused by crash and 2 cases were caused by traffic accident. There were 4 cases of tendon exposure and skin defects in the distal dorsal is pedis, 6 cases of bone exposure and skin defects in and adjacent to the first metatarsal head and 1 case of bone exposure and skin defects in the distal dorsal is pedis due to the third and fourth toe damage. The area of defects ranged from 3 cm × 3 cm to 7 cm × 5 cm. Distally based medial dorsal neurocutaneous flaps on foot were incised to repair the soft tissue defects and the size of the flaps ranged from 4 cm × 4 cm to 8 cm × 6 cm. Thickness skin graft was appl ied to repair donor site. Results All the flaps survived and all wounds healed by first intention. Skin graft in donor site survived completely in 10 cases and survived partly in 1 cases (heal ing was achieved after the flap above lateral malleolus was used to repair). All cases were followed up for 6 months-1 year. The color, texture and thickness of the flaps were similar to those of recipient site. All patients returned to their normal weight-bearing walking. No skin ulceration in flaps and donor site was observed. Conclusion The operative technique of the distally based medial dorsal neurocutaneous flap on foot is simple, convenient and safe. The distally based flap is effective in repairing soft tissue defects of middle and small sized skin and soft tissue defects in distal dorsal is pedis.