Objective To explore the effectiveness and mechanism of pure platelet-rich plasma (P-PRP) on osteochondral injury of talus. Methods Thirty-six patients with osteochondral injury of talus selected between January 2014 and October 2017 according to criteria were randomly divided into control group (group A), leukocyte PRP (L-PRP) group (group B), and P-PRP group (group C), with 12 cases in each group. There was no significant difference in gender, age, disease duration, and Hepple classification among the three groups (P>0.05). Patients in the groups B and C were injected with 2.5 mL L-PRP or P-PRP at the bone graft site, respectively. Patients in the group A were not injected with any drugs. The American Orthopaedic Foot and Ankle Society (AOFAS) score and visual analogue scale (VAS) score were used to evaluate the effectiveness before operation and at 3, 6, and 12 months after operation. Study on the therapeutic mechanism of P-PRP: MC3T3-E1 cells were randomly divided into control group (group A), L-PRP group (group B), and P-PRP group (group C). Groups B and C were cultured with culture medium containing 5% L-PRP or P-PRP respectively. Group A was cultured with PBS of the same content. MTT assay was used to detect cell proliferation; ELISA was used to detect the content of matrix metalloprotein 9 (MMP-9) protein in supernatant; alkaline phosphatase (ALP) activity was measured; and real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of osteopontin (OPN), collagen type Ⅰ, and MMP-9 in cells. Western blot was used to detect the expression of MMP-9 in supernatant and phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT), and phosphorylated c-Jun (p-c-Jun) in cells. ResultsAll patients were followed up 13-25 months, with an average of 18 months. No complication such as wound infection and internal fixation failure occurred. MRI showed that the degree of injury was similar between the three groups before operation, and patients in the three groups all recovered at 6 months after operation. Moreover, group C was superior to groups A and B. Compared with preoperation, AOFAS scores and VAS scores in the three groups were all significantly improved at each time point after operation (P<0.05). AOFAS score of group C was significantly higher than that of groups A and B at 3, 6, and 12 months after operation (P<0.05); there was no significant difference in VAS score between the three groups (P>0.05). Study on the therapeutic mechanism of P-PRP: The absorbance (A) value, ALP activity, the relative mRNA expression of OPN and collagen type Ⅰ in group C were significantly higher than those in groups A and B (P<0.05), and those in group B were significantly higher than those in group A (P<0.05). The relative expression of MMP-9 protein and mRNA and the content of MMP-9 protein detected by ELISA in group B were significantly higher than those in groups A and C, while those in group C were significantly lower than those in group A (P<0.05). Western blot detection showed that the relative expression of PI3K, pAKT, and p-c-Jun protein in group B was significantly higher than those in groups A and C (P<0.05), but there was no significant difference between groups A and C (P>0.05). Conclusion P-PRP is superior to L-PRP for osteochondral injury of talus, which may be related to the inhibition of PI3K/AKT/AP-1 signaling pathway in the osteoblast, thereby reducing the secretion of MMP-9.
Objective To compare the effectiveness of arthroscopic osteochondral autologous transplantation (OAT) in the treatment of young and middle-aged patients with the articular cartilage injury. MethodsA clinical data of 43 patients (43 knees) with articular cartilage injury, who underwent OAT between January 2008 and August 2016, was retrospectively analyzed. There were 23 patients aged 20-40 years (young group) and 20 patients aged 40-60 years (middle-aged group). The difference in age between the two groups was significant (t=14.120, P=0.001). There was no significant difference in gender, body mass index, complications, affected side, lesion site, lesion area, and the International Cartilage Repair Society (ICRS) grade of cartilage injury between the two groups (P>0.05). The function of knee joint was evaluated by Lysholm score and International Knee Documentation Committee (IKDC) score during the follow-up. MRI examination was performed to observe the repair of both receiving and the donor sites. ResultsAll the incisions in the two groups were healed by first intention. All patients in the two groups were followed up with an average of 3.6 years (range, 2-8 years). At 2 years after operation, the Lysholm and IKDC scores were significantly improved in the two groups when compared with the preoperative scores (P<0.05). The Lysholm and IKDC scores in the young group were significantly better than those in the middle-aged group before operation and at 2 years after operation (P<0.05). However, there was no significant difference in the differences of the Lysholm and IKDC scores between pre- and post-operation between the two groups (P>0.05). The MRI examination at 2 years after operation showed that both receiving and the donor sites healed well in the two groups. ConclusionAccording to the texture, thickness, elasticity, and lesion area of the cartilage, arthroscopic OAT might be the first choice for the articular cartilage injury in middle-aged patients and can obtain the satisfactory short-term effectiveness.
Objective To summarize the classic and latest treatment techniques for localized knee cartilage lesions in clinical practice and create a new comprehensive clinical decision-making process. Methods The advantages and limitations of various treatment methods for localized knee cartilage lesions were summarized by extensive review of relevant literature at home and abroad in recent years. Results Currently, there are various surgical methods for treating localized knee cartilage injuries in clinical practice, each with its own pros and cons. For patients with cartilage injuries less than 2 cm2 and 2-4 cm2 with bone loss are recommended to undergo osteochondral autograft (OAT) and osteochondral allograft (OCA) surgeries. For patients with cartilage injuries less than 2 cm2 and 2-4 cm2 without bone loss had treatment options including bone marrow-based techniques (micro-fracture and ogous matrix induced chondrogenesis), autologous chondrocyte implantation (ACI)/matrix-induced ACI, particulated juvenile allograft cartilage (PJAC), OAT, and OCA. For patients with cartilage injuries larger than 4 cm2 with bone loss were recommended to undergo OCA. For patients with cartilage injuries larger than 4 cm2 without bone loss, treatment options included ACI/matrix-induced ACI, OAT, and PJAC. Conclusion There are many treatment techniques available for localized knee cartilage lesions. Treatment strategy selection should be based on the size and location of the lesion, the extent of involvement of the subchondral bone, and the level of evidence supporting each technique in the literature.
ObjectiveTo explore the effectiveness of arthroscopic microfracture combined with osteochondral autologous transplantation (OAT) in treatment of large area (4-6 cm2) cartilage injury of the femoral condyle of knee.MethodsBetween March 2016 and June 2017, 22 patients of large area cartilage injury of the femoral condyle of knee were treated with arthroscopic microfracture combined with OAT. There were 16 males and 6 females with an average age of 22-60 years (mean, 38.6 years). The cause of injury was traffic accident in 8 cases and sports injuries in 14 cases. The disease duration was 1-6 months (mean, 3.4 months). There were 15 cases of medial femoral condyle injuries and 7 cases of lateral condyle injuries. The area of cartilage defect was 4-6 cm2 (mean, 4.98 cm2). According to the International Cartilage Repair Society (ICRS) classification, 9 cases were rated as grade Ⅲ and 13 cases as grade Ⅳ. Eighteen cases were combined with meniscus injuries. Preoperative visual analogue scale (VAS) score was 6.36±1.25 and Lysholm score was 36.00±7.77.ResultsAll incisions healed by first intention. All patients were followed up 2-3 years with an average of 2.3 years. At 2 years after operation, the VAS score was 1.27±0.94 and the Lysholm score was 77.82±6.21, which were significantly improved when compared with those before operation (t=16.595, P=0.000; t=21.895, P=0.000). At 2 years after operation, MRI showed that the cartilage defect was repaired well.ConclusionArthroscopic microfracture combined with OAT can be used to treat large area cartilage injury of the femoral condyle of knee, and the good early effectiveness can be obtained.
Objective To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. Methods The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. Results CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. Conclusion miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.
ObjectiveTo explore the relationship between subchondral bone reconstruction and articular cartilage regeneration in a rabbit model of spontaneous osteochondral repair. MethodsTwenty-four 6-month-old New Zealand white rabbits were included. The osteochondral defects (4 mm in diameter and 3 mm in depth) were created in the trochlear groove of the unilateral femur, which penetrated the subchondral bone without any treatment. The rabbits were sacrificed at 1, 4, 12, and 24 weeks after operation, respectively. The specimens were obtained for macroscopic, histological, and immunohistochemical observations. According to the International Cartilage Repair Society (ICRS) histological scoring, the effect of cartilage repair was assessed. The histomorphometrical parameters of subchondral bone were analyzed by micro-CT scan and reconstruction, and the relationship between cartilage repair and the histomorphometrical parameters of the subchondral bone were also analyzed. ResultsOsteochondral defects could be repaired spontaneously in rabbit model. With time, defect was gradually filled with repaired tissue, subchondral bone plate under the defect region gradually migrated upward. Bone mineral density, bone volume fraction, tissue mineralized density, trabecula number, and trabecula thickness were increased, while trabecula spacing was decreased. Significant difference was found in the other parameters between different time points (P<0.05) except for trabecula thickness between at 4 and 12 weeks after operation (P>0.05). Histological examination showed that fibrous repair was predominant with rare hyaline cartilage. With time, ICRS scores increased gradually, showing significant differences between other time points (P<0.05) except for between at 4 and 12 weeks after operation (P>0.05). Among the histomorphometrical parameters of subchondral bone, the trabecula spacing was negatively correlated with ICRS score (r=-0.584, P=0.039), and the other histomorphometrical parameters were positively correlated with ICRS score (r=0.680-0.891). ConclusionThere is relevant correlation as well as independent process between cartilage regeneration and subchondral bone reconstruction in the rabbit model of spontaneous osteochondral repair, and fast subchondral bone remodeling may adversely affect articular cartilage repair.
Objective To determine the short-term effectiveness of matrix-induced autologous chondrocyte implantation (MACI) for femoral trochlea cartilage injury. Methods A retrospective analysis was performed on the clinical data of 10 patients with femoral trochlea cartilage injury treated with MACI between June 2012 and October 2014. There were 6 males and 4 females, aged from 15 to 48 years (mean, 33 years). The left knee was involved in 3 cases and the right knee in 7 cases. Nine patients had a history of trauma, and 1 case suffered from osteochondritis dissecans. Combined injuries included meniscus injury in 1 case, anterior cruciate ligament injury in 3 cases, and lateral collateral ligament tear in 2 cases. The mean lesion depth was 2.80 mm (range, 2-7 mm), with the mean defect size of 84.85 mm2 (range, 28.26-153.86 mm2). The mean duration of definite diagnosis was 14 days (range, 5 days to 3 months). By using arthroscopic biopsy, 200-300 mg healthy articular cartilage at non weight-bearing area of the knee femoral trochlea was collected as a source of seed cells, which were isolated and cultured to prepare MACI membrane. The adhesion activity, growth rate, and mechanical properties of the chondrocytes on the Bio-gide collagen scaffold were evaluated. In addition, the stretch rate, tensile strength, and suture strength of scaffold were tested. MACI membrane was implanted after 2 weeks to 6 months. The visual analogou scale (VAS), Lysholm score, and Tegner movement level score at preoperation and last follow-up were used to assess the function. Results The MACI membrane was successfully prepared, and the human chondrocytes adhered and grew well on the Bio-gide collagen scaffold. Mechanical test showed that MACI membrane had the stretch rate of 65.27%, the tensile strength of 26.81 MPa, and the suture strength of 6.49 N, indicating good mechanical properties. MACI membrane was successfully implanted. The mean operation time was 58.5 minutes (range, 43-99 minutes), and the mean hospitalization time was 7 days (range, 6-15 days). All incisions healed well. Ten cases were followed up 9 to 16 months (mean, 12 months). Four cases underwent iliac bone graft surgery. The mean healing time was 14 weeks (range, 12-16 weeks). No complications of osteochondrolysis, knee pain, nerve and vascular injury, deep vein thrombosis, and knee adhesion occurred during follow-up. The VAS score, Lysholm score, and Tegner score at last follow-up were significantly improved when compared with preoperative scores (t=12.060,P=0.000;t=–9.200,P=0.000;t=–14.000,P=0.000). Conclusion MACI for femoral trochlea cartilage injury has good short-term effectiveness, with less injury and fast function recovery.
Objective To observe the outcome of arthroscopic meniscal plasty and suture repair to treat torn discoid lateral meniscus involving popl iteal hiatus. Methods Between January 2008 and May 2009, 21 cases of torn discoid lateral meniscus involving popl iteal hiatus were treated by arthroscopic surgery. There were 9 males and 12 females with an average ageof 22.5 years (range, 12-45 years), including 12 left knees and 9 right knees. Seven cases had the history of injury and other 14 cases had uncertain trauma. The average disease duration was 6.4 months (range, 3 months to 2 years). All patients complained knee pain or locking with positive McMurray test and mill ing test before surgery. All cases had torn discoid lateral meniscus, and the tear extended to the popl iteal hiatus, including 17 cases of complete type and 4 cases of incomplete type according to the Watanabe classification. After meniscal plasty, suture repair of torn popl iteal lateral hiatus was performed. The anterior part to hiatus was repaired by the outside-in technique, and the posterior part underwent repair of all inside technique by FasTFix. Results All wounds healed by first intention with no compl ications such as infection, stiffness of knee, or injury of common peroneal nerve. All patients were followed up 12-28 months with an average of 18 months. The symptoms of knee pain or locking disappeared postoperatively with negative McMurray test and mill ing test in all patients. The Lysholm score was improved from 54.0 ± 13.4 to 90.0 ± 6.6 at 12 months postoperatively, showing significant difference (t=— 12.00, P=0.00). Based on the improved Lysholm classification standard, the results were excellent in 14 cases, good in 5, and fair in 2; the excellent and good rate was 90.5%. Conclusion For torn discoid lateral meniscus involving popl iteal hiatus, based on meniscal plasty, suture repair of the popl iteal hiatus would contribute to preserve the peripheral part and restore its stabil ity.
ObjectiveTo compare the incidence of chondral injury using Rigidfix femoral fixation device via the anteromedial approach and the tibial tunnel approach during anterior cruciate ligament (ACL) reconstruction. MethodsEighteen adult cadaver knees were divided randomly into 2 groups, 9 knees in each group. Femoral tunnel drilling and cross-pin guide insertions were performed using the Rigidfix femoral fixation device through the anteromedial approach (group A) and the tibial tunnel approach (group B). ACL reconstruction simulation was performed at 0, 10, 20, 30, 45, 60, 70, 80, and 90°in the horizontal position. The correlation between incidence of chondral injury and slope angles was analyzed, and then the incidence was compared between the 2 groups. ResultsThe correlation analysis indicated that the chondral injury incidence increased with the increasing of the slope angle (r=0.611, P=0.000; r=0.852, P=0.000). The incidence of chondral injury was 69.1% (56/81) and 48.1% (39/81) in groups A and B respectively, showing significant difference (χ2=7.356, P=0.007). The sublevel analysis showed that the chondral injury incidence of group A (36.1%, 13/36) was significantly higher than that of group B (0) at 0-30°(χ2=15.864, P=0.000), but no significant difference was found between group A (95.6%, 43/45) and group B (86.7%, 39/45) at 45-90°(P=0.267). ConclusionIt has more risk of chondral injury to use Rigidfix femoral fixation device via the anteromedial approach than the tibial tunnel approach to reconstruct ACL.
ObjectiveTo investigate evaluation and treatment of osteochondral injury of knee joint and its effectiveness.MethodsBetween January 2010 and January 2016, 17 patients with osteochondral injury of knee joint were admitted. There were 2 males and 15 females, with an average age of 19.3 years (range, 15-33 years). The causes of injury included the sprain in 14 cases and knee hyper-extension and varus due to violence in 3 cases. The osteochondral injury located at patella in 8 cases, lateral femoral condyle in 4 cases, medial femoral condyle in 1 case, and tibial plateau in 4 cases. There were 15 cases of fresh fractures and 2 cases of old fractures. The Lysholm score of the knee joint was 31.6±2.3. After open reduction of osteochondral fractures of 14 cases, the absorbable rods (9 cases), absorbable cartilage nail (3 cases), or absorbable sutures (2 cases) were selected for fixation. The osteochondral fractures at the medial tibial plateau margin (non-weight-bearing area) in 3 cases were removed.ResultsThe incision fat liquefaction occurred in 1 case after operation and healed after debridement. The other incisions had primary healing. All 17 patients were followed up 6 months to 2 years (mean, 13 months). Thirteen of 14 patients with internal fixation had good fractures healing without traumatic arthritis; 1 case of patella osteochondral fracture did not heal. Three patients with non-weight-bearing osteochondral removal had no narrowing of the medial joint space and traumatic arthritis during the follow-up. The Lysholm score of knee joint at 1 year after operation was 91.3±1.1, which significantly improved when compared with preoperative score (t=7.136, P=0.001).ConclusionFor the osteochondral injury of the knee joint, the osteochondral block with full-layer cancellous bone can be treated with open reduction and internal fixation; while osteochondral block with punctate cancellous bone can be directly remove.