Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
ObjectiveTo investigate evaluation and treatment of osteochondral injury of knee joint and its effectiveness.MethodsBetween January 2010 and January 2016, 17 patients with osteochondral injury of knee joint were admitted. There were 2 males and 15 females, with an average age of 19.3 years (range, 15-33 years). The causes of injury included the sprain in 14 cases and knee hyper-extension and varus due to violence in 3 cases. The osteochondral injury located at patella in 8 cases, lateral femoral condyle in 4 cases, medial femoral condyle in 1 case, and tibial plateau in 4 cases. There were 15 cases of fresh fractures and 2 cases of old fractures. The Lysholm score of the knee joint was 31.6±2.3. After open reduction of osteochondral fractures of 14 cases, the absorbable rods (9 cases), absorbable cartilage nail (3 cases), or absorbable sutures (2 cases) were selected for fixation. The osteochondral fractures at the medial tibial plateau margin (non-weight-bearing area) in 3 cases were removed.ResultsThe incision fat liquefaction occurred in 1 case after operation and healed after debridement. The other incisions had primary healing. All 17 patients were followed up 6 months to 2 years (mean, 13 months). Thirteen of 14 patients with internal fixation had good fractures healing without traumatic arthritis; 1 case of patella osteochondral fracture did not heal. Three patients with non-weight-bearing osteochondral removal had no narrowing of the medial joint space and traumatic arthritis during the follow-up. The Lysholm score of knee joint at 1 year after operation was 91.3±1.1, which significantly improved when compared with preoperative score (t=7.136, P=0.001).ConclusionFor the osteochondral injury of the knee joint, the osteochondral block with full-layer cancellous bone can be treated with open reduction and internal fixation; while osteochondral block with punctate cancellous bone can be directly remove.
Objective To const ruct art ificial derm is on co llagen2chondront in sulfate (CS) scaffo ld. Methods Co llagen w as compounded from CS and 1-ethyl-3-(13-dimethyl am inop ropyl) carbodiim ide (EDC) used as a cro sslinker. Physical and chem ical p ropert ies of the scaffo ld w ere characterized by elect ron spect ro scopy fo r chem ical analysis (ESCA ) , scanning elect ron m icrograph (SEM ) , HE staining, and mechanical p roperty test. Derm is fibroblasts w ere iso lated from human embryo and w ere cultured on the scaffo lds. Th rough h isto logical test ing, immunoh istochem ical test ing and biochem ical p roperty test ing, the p roperty of co llagen-CS art ificial derm is w as compared w ith that of colla gen spongy art ificial derm is. Results Co llagen-CS had th ree2dimension st ructure w ith po rous. Compared w ith co llagen scaffo ld, themechanical p roperty of co llagen2CS scaffo ld imp roved. There w eremo re po lar group s on the surface of co llagen-CS scaffo ld. The fibroblasts on the co llagen-CS scaffo ld grew w ell, and art ificial derm is w as const ructed. Conclus ion Co llagen-CS art ificial derm is has mo re excellent bio logical and mechanical p ropert ies. F ibroblasts at tach and p ro liferate bet ter on co llagen2CS scaffo ld than on co llagen scaffo lds.
Objective To study the biological characteristic and potential of chondrocytes grafting cultured on fascia in repairing large defect of articular cartilage in rabbits. Methods Chondrocytes of young rabbits were isolated and subcultured on fascia. The large defect of articular cartilage was repaired by grafts of freeze-preserved and fresh chondrocytes cultured on fascia, and free chondrocytes respectively; the biological characteristic and metabolism were evaluated bymacroscopic, histological and immunohistochemical observations, autoradiography method and the measurement of nitric oxide content 6, 12, 24 weeks after grafting. Results The chondrocytes cultured on fascia maintained normal growth feature and metabolism, and there was no damage to chondrocytes after cryopreservation; the repaired cartilage was similar to the normal cartilage in cellular morphology and biological characteristics. Conclusion Chondrocytes could be cultured normally on fascia, which could be used as an ideal carrier of chondrocytes.
目的探讨原发性肺软骨瘤(chondroma)的临床特点、诊断及其治疗方法,以提高临床医师对本病的认识和诊疗水平 方法回顾性分析我院4例(男2例、女2例,年龄50~63岁)肺软骨瘤的临床资料,并结合国内外1983年1月至2013年9月30年文献报道的51例患者的临床资料进行分析和总结。 结果55例患者中男30例,女25例,发病年龄10~84(42.47± 17.27)岁。主要临床表现有咳嗽、咳痰、痰中带血、胸闷、胸痛、呼吸困难、喉部不适等,也有无临床症状,于体检发现。临床诊断以肺癌、结核、错构瘤、炎性假瘤、肺畸胎瘤及肺部包块等。55例患者都行手术治疗,无手术死亡。 结论肺软骨瘤是临床上一种较为罕见的良性肿瘤,临床表现缺乏特异性,术前误诊率较高,影像资料有助于诊断和鉴别诊断,确诊依靠病理诊断以及肺软骨瘤与Carney’s综合征的关系,手术切除治疗疗效确切。
Objective To investigate the feasibility of the complex of the fibrin sealant (FS) and the bone marrow mesenchymal stem cells(MSCs) to createanew cartilage in the nude mice by the issue engineering technique. Methods T he MSCs were isolated from healthy humans and were expanded in vitro. And then the MSCs were induced by the defined medium containing the transforming growth factor β1 (TGF-β1), dexamethasone, and ascorbic acid. The biomechanical properties of the chondrocytes were investigated at 7 and 14 days. The MSCs induced for 7days were collected and mixed with FS. Then, the FSMSCs mixture was injectedby a needle into the dorsum of the nude mice in the experimental group. In the tw o control groups, only FS or MSCs were injected respectively. The specimens were harvested at 6 and 12 weeks,and the ability of chondrogenesis in vivo was inve stigated by the gross observation, HE, Alcian Blue staining, and type Ⅱ collagen immunohistochemistry. Results The MSCs changed from a spindlel ike fibroblastic appearance to a polygonal shape when transferred to the defined medium, and couldbe induced to express the chondrocyte matrix. After an injection of the mixture , the cartilage-like tissue mass was formed, and the specimens were harvested from the mass at 6 and 12 weeks in the experimental group. The tissue mass at 6 we eks was smaller and relatively firm in texture, which had a distinct lacuna structure. And glycosaminoglycan (GAG) and Type II Collagen expressions were detecte d. The tissue mass at 12 weeks was bigger, firmer and glossier with the mature c hondrocytes lying in the lacuna structure. The positive Alcian blue and Collagen II immunohistochemistry stainings were ber at 12 weeks than at 6 weeks. But there was no cartilage-like tissue mass formed in the two control groups. Conclusion This study demonstrates that the fibrin sealant and the bone marrow mesenchymal stem cells can be successfully used in a constructing technique for the tissue engineered injectable cartilage.
Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
Objective To develop a novel porous three-dimensional scaffold and to investigate its physico-chemical properties for tissue engineering cartilage.Methods Refined 88% deacetylation degree chitosan was prepared and dissolved in 0.2 mol/L acetate acid and fully mixed with highly purified porcine type Ⅱcollagen in 0.5 mol/L acetate acid solution in a ratio of 4 to 1 (wt/wt). Freeze-drying process was employed to fabricate the composite scaffold. The construct wascross-linked by use of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and Nhydroxysuccinimide (NHS). A mechanical tester was utilized to determine the tensilestrength change before and after cross-linking. The microstructure was observed via scanning electron microscopy (SEM). The lysozyme degradation was performedto evaluate the degradability of the scaffold in vitro. Results A bulk scaffold with desired configuration was obtained. The mechanical test showed that the crosslinking treatment could enhance the mechanical strength of the scaffold. The SEM results revealed that the two constituents evenly distributed in the scaffold and that the matrix was porous, sponge-like with interconnected pore sizing 100250 μm. In vitro lysozyme degradation indicated that crosslinked or uncross-linked composite scaffolds had faster degradation rate than the chitosan matrix. Conclusion Chitosan and typeⅡcollagen can be developed into a porous three-dimensional scaffold. The related physico-chemical tests suggest that the composite socaffold meets requirements for tissue engineered scaffold and may serve as an alternative cellcarrier for tissue engineering cartilage.