【Abstract】 Objective To produce a new bone tissue engineered carrier through combination of xenograft bone (X)and sodium alginate (A) and to investigate the biological character of the cells in the carrier and the abil ity of bone-forming in vivo, so as to provide experimental evidence for a more effective carrier. Methods BMSCs were extracted from 2-week-old New Zealand rabbits and the BMSCs were induced by rhBMP-2 (1 × 10-8mol/L). The second generation of the induced BMSCs was combined with 1% (V/W) A by final concentration of 1 × 105/mL. After 4-day culture, cells in gel were investigated by HE staining. The second generation of the induced BMSCs was divided into the DMEM gel group and the DMEM containing 1% A group. They were seeded into 48 well-cultivated cell clusters by final concentration of 1 × 105/mL. Seven days later, the BMP-2 expressions of BMSCs in A and in commonly-cultivated cells were compared. The second generation of the induced BMSCs was mixed with 2% A DMEM at a final concentration of 1 × 1010/mL. Then it was compounded with the no antigen X under negativepressure. After 4 days, cells growth was observed under SEM. Twenty-four nude mice were randomly divided into 2 group s (n=12).The compound of BMSCs-A-X (experimental group) and BMSCs-X (control group) with BMSCs whose final concentrat ion was 1 × 1010/mL was implanted in muscles of nude mice. Bone formation of the compound was histologically evaluated by Image Analysis System 2 and 4 weeks after the operation, respectively. Results Cells suspended in A and grew plump. Cell division and nuclear fission were found. Under the microscope, normal prol iferation, many forming processes, larger nucleus, clear nucleolus and more nuclear fission could be seen. BMP-2 expression in the DMEM gel group was 44.10% ± 3.02% and in the DMEM containing 1% A group was 42.40% ± 4.83%. There was no statistically significant difference between the two groups (P gt; 0.05). A was compounded evenly in the micropore of X and cells suspended in A 3-dimensionally with matrix secretion. At 2 weeks after the implantation, according to Image Analysis System, the compound of BMSCs-A-X was 5.26% ± 0.24% of the totalarea and the cartilage-l ike tissue was 7.31% ± 0.32% in the experimental group; the compound of BMSCs-X was 2.16% ± 0.22% of the total area and the cartilage-l ike tissue was 2.31% ± 0.21% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). At 4 weeks after the operation, the compound of BMSCs-A-X was 7.26% ± 0.26% of the total area and the cartilage-l ike tissue was 9.31% ± 0.31% in the experimental group; the compound of BMSCs-X was 2.26% ± 0.28% of the total area and the cartilage-l ike tissue was 3.31% ± 0.26% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). Conclusion The new carrier compounding A and no antigen X conforms to the superstructural principle of tissue engineering, with maximum cells load. BMSCs behave well in the compound carrier with efficient bone formation in vivo.
Objective To construct small interfering RNA(siRNA) eukaryotic expression vector specific for human hnRNP K gene,and to observe its silencing effects on hnRNP K gene in A549 cells.Methods The expression vectors of pSUPER/hnRNP K siRNAa,pSUPER/hnRNP K siRNAc and pSUPER/siRNAn were constructed by gene recombination and then transfected into the A549 lung carcinoma cell line by using Lipofectamine2000(a and c respectively represented A and C fragments in hnRNP K coding sequence contained 19 nts,n represented nonsense fragment as control).The mRNA and protein were harvested after 24 h and analyzed for the expression of hnRNP K by RT-PCR and Western blotting respectively.Results The siRNA vector targeted to hnRNP K successfully decreased hnRNP K mRNA and protein levels 24 h after transfection in A549 cells.Relative expressed doses of hnRNP K mRNA in lung cancer cells transfected by hnRNP K siRNAa and hnRNP K siRNAc respectively were 0.24±0.53 and 0.28±0.57 after 24 h,which were significantly lower than that in the control group(both Plt;0.01).The gray scale values of hnRNP K protein were 0.23±0.11 and 0.28±0.09 respectively,which were also significantly lower than those in the control group(both Plt;0.05).And pSUPER/hnRNP K siRNAa was the most effective one.Conclusion Eukaryotic expression vector of siRNA specific for hnRNP K is successfully constructed,which lays the basis for the function study of hnRNP K gene and its application in the treatment of lung carcinoma.
OBJECTIVE: To construct eukaryotic expression vector of rat myogenin gene for further study on its functions in skeletal muscle denervated atrophy and repair. METHODS: The cloning vectors (containing full length of myogenin cDNA and two restriction sites: Hind III and Xho I) were first cut by two restriction endonuclease: Hind III and Xho I, and the same as the eukaryotic expression vector; then, the myogenin cDNA and the digested vector were ligated by T4 DNA ligase, and recombinant eukaryotic expression vector was formed. Its length was certificated by agarose gel electrophoresis analysis, digestion with Hind III and Xho I, PCR; and the rightness of the myogenin cDNA sequence was confirmed by sequencing. RESULTS: The results of agarose gel electrophoresis analysis, digestion, and PCR confirmed the right length of inserted DNA, which was the same as the myogenin cDNA, and the sequencing result of pcDNA3-myogenin was identical with the reported. CONCLUSION: pcDNA3-myogenin a eukaryotic expression vector, is successfully constructed.
Objective To study efficiency and security of the recombinant adenoviralmediated gene transfer to the donor heart during the heart transplantation. Methods A total of 140 healthy male Wistar rats,aged 10 weeks, weighing 200250 g, were equally divided into the donor group and the recipient group, and then 70 rats in the recipient group were randomly andequally divided into 2 subgroups: the gene transfer group and the control group. The rat model of heterotopic heart transplantation(Abdomen)was developed, the donor hearts were removed and their coronary arteries were perfused with 800 μlof the recombinant adenoviral vectors encoding the β-galactosidase gene(Ad-LacZ). The grafts were stored in the 4℃ cold saline solution for 30 minutes, and then the syngeneic transplant was performed. In the control group, saline of tales doses was perfused. The donor hearts were harvested at 3, 5, 7, 14, and 28days (n=7)after transplantation, and the β-galactosidase activity was assessed by the X-gal staining. At 28 days the major organs of the recipients were tested by the histopathological analysis and the polymerase chain reaction of the adenoviral E1A sequences. Results The successful gene transfer of the βgalactosidase gene was demonstrated in the adenovirus-perfused hearts, with no staining in the control group. The gene expression reached a peak level at 3, 5 and 7 days, and the averaged numbers of the total βgalactosidase positive staining cells per slice were 66.4±23.1, 91.3±32.4 and 68.7±22.7, respectively, with no significant difference between the groups (Pgt;0.05). At 14 days the gene expression gradually declined (32.1±13.9), and the significant difference was found when compared with that at 3, 5 and 7 days (Plt;0.05). At 28 days the cells positive for β-galactosidase were sparse (3.9±3.4), and the gene transfer was significantly less efficient compared with that at 3, 5, 7 and 14 days (Plt;0.05). The major organs of the recipients were not affected seriously at 28 days. No virus spread to other organs in this experimental protocol. Conclusion The ex vivo adenoviralmediated gene transfer intracoronarily to the donor heart during the heart transplantation is feasible and safe.
Objective To study the interferencing and anti-tumor effects of lentiviral vector of siRNA targeting IGF1R and EGFR gene of the liver cancer cell. Methods The complementary DNA containing both sense and antisense Oligo DNA of the targeting sequence was designed, synthesized and connected to the pLVTHM vector, named pLVTHM-IGF1R, into whom the EGFR-siRNA expression frame containing H1 promotor synthesized by RT-PCR was cloned to generate pLVTHM-IGF1R-EGFR-siRNA. The 293T cells were cotransfected by 3 plasmids of pLVTHM-IGF1R-EGFR-siRNA, psPAX2 and pMD2G to enclose LVTHM-IGF1R-EGFR-siRNA, which was amplified in large amount and purified by caesium chloride density gradient centrifugation for measurement of virus titer. SMMC7721 cells infected by LVTHM-IGF1R-EGFR-siRNA were infection group, the untreated SMMC7721 cells and blank vector plasmid LVTHM were two control groups (SMMC7721 cell group and blank vector group). The effect of LVTHM-IGF1R-EGFR-siRNA on IGF1R and EGFR expressions of SMMC7721 cells were detected by RT-PCR and Western blot. The antitumor potential of LVTHM-IGF1R-EGFR-siRNA to SMMC7721 cells was evaluated by Cell Counting Kit-8 assay for cell growth and TUNEL for apoptosis respectively. Results LVTHM-IGF1R-EGFR-siRNA was constructed successfully. Functional pfu titers of LVTHM-IGF1R-EGFR-siRNA was 4.58×109 pfu/ml. Protein and mRNA expression of IGF1R and EGFR of infection group were less than those of blank vector group and SMMC7721 cell group (P<0.05), LVTHM-IGF1R-EGFR-siRNA was more effective to inhibit the proliferation and promote apoptosis of SMMC7721 cells (P<0.05). Conclusion LVTHM-IGF1R-EGFR-siRNA expressing IGF1R-EGFR-siRNA can inhibit the expression of IGF1R and EGFR, and may be used for further investigation of gene therapy of liver cancer.
For a long period of time, silk fibroin has been applied in biomedical areas. Along with the development of biotechnology, new functions of silk fibroin are being found and developed. From the suture of surgery to the therapeutic drug and the ordinary tissue engineering frame to high grade frame with drug buffer system, exploitation of silk fibroin is constantly introduced with something new from the old ones. In our review, we summarize the applications of silk fibroin in tissue engineering, drug buffer system and medical care.
ObjectiveTo clone full-length cDNA of rat galectin-9 and construct recombinant adenovirus granule containing rat galectin-9 gene. MethodsThe galectin-9 gene was amplified by RT-PCR from rat liver tissue and inserted orientationally into plasmid pDC316-GFP digested by restriction endonucleases NotⅠ and HindⅢ. The recombinant pDC316-GFP-galectin-9 shuttle plasmid was identified by PCR, restriction endonuclease digestion and sequencing, and then co-transfected with rescue plasmid pBHGlox△E1.3Cre into HEK-293 cells by liposome reagent. Recombinant adenovirus vector containing rat galectin-9 gene (Ad5-galectin-9) was generated by sitespecific recombination and confirmed by PCR, and then Ad5-galectin-9 was propagated in HEK-293 cells and purified. The infectious titer of viral stock was determined by TCID50 assay. ResultsConstruction of pDC316-GFP-galectin-9 shuttle plasmid was confirmed to be correct by PCR, restriction endonuclease digestion and sequencing. Construction of recombinant adenovirus Ad5-galectin-9 was confirmed to be correct by PCR. The infective titer of Ad5-galectin-9 was 1.4×109 U/ml. ConclusionRecombinant adenovirus vector containing rat galectin-9 gene (Ad5-galectin-9) is successfully constructed, which provides the foundation of further research on the function of galectin-9 gene.
Objective To construct inducible lentiviral vector containing human bone morphogenetic protein 2 (hBMP-2) gene and to study its expression in human umbil ical cord blood mesenchymal stem cells (HUMSCs). Methods hBMP-2 gene was ampl ified by PCR from a plasmid and was cloned into pDown by BP reaction. pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-reverse transactivator (rtTA) were obtained with GATEWAY technology, and then were sequenced and analyzed by PCR. The recombinant vectors were transfected into 293FT cells respectively through l ipofectamine, and the lentiviral viruses were harvested from 293FT cells, then the titer was determined. Viruses were used to infect HUMSCs in tandem. In order to research the influence of induction time and concentration, one group of HUMSCs was induced by different doxycl ine concentrations (0, 10, 100 ng/mL, and 1, 10, 100 μg/mL) in the same induction time (48 hours), and the other by the same concentration (10 μg/mL) in different time points (12, 24, 48, and 72 hours). The expression of target gene hBMP-2 was indentified by ELISA method. After 2-week osteogenic induction of transfected HUMSCs, the mineral ization nodes were detected with Al izarin bordeaux staining method. Results Therecombinant inducible lentiviral vectors (pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-rtTA) were successfully constructed. The lentiviruses were also obtained and mediated by 293FT cells, and the virus titers were 3.5 × 108 TU/mL and 9.5 × 107 TU/mL respectively. HUMSCs could expression hBMP-2 by induction of doxycycl ine. The expression of hBMP-2 reached the peak at 10 μg/mL doxycl ine at 48 hours of induction. After 2-week osteogenic induction, a lot of mineral ization nodes were observed. Conclusion The recombinant inducible lentiviral vectors containing hBMP-2 gene can be successfully constructed, which provide an effective and simple method for the further study of stem cells and animal experiment in vivo.
Objective To construct gene-modified hepatic stem cells (WB-F344 cells), which have rat IL-13 gene and can secrete the recombinant rat IL-13 cytokine in the cells. Methods Firstly, the rat IL-13 sequences were synthesized. Then the sequences were amplificated in bacterium coli after recombinated with pWPXL-MOD plasmid. After PCR and sequence identification, the positive clones were packaged into lentivirus. After detecting the virus titer, the WB-F344 cells with constructed lentivirus vector with rat IL-13 gene were cultured, then the valid targets (expression level of the IL-13) were detected by real time-PCR and Western blot in cultured WB-F344 cells on 5 days. Results The valid DNA of rat IL-13 was recombinated and packaged in lentivirus vector. The recombinant gene sequence was correct by checking with gene sequence test. Then the recombinant was introducted into the WB-F344 cells cultures. The best multiplicity of infection (MOI) value for effective transfection was 5. IL-13 had been detected on day 5 after transfection by checking with real-time PCR and Western blot. Conclusion The recombinant rat IL-13 gene with lentivirus vector is constructed and gene-modified WB-F344 cells are cultured successfully, which can be used in next animal experiment.
Objective To study the effect of recombinant adeno-associated virus (rAAV) vector co-expressing human vascular endothel ial growth factor 165 (hVEGF165) and human bone morphogenetic protein 7 (hBMP-7) genes on bone regeneration and angiopoiesis in vivo so as to provide a theoretical basis for the gene therapy of avascular necrosis of thefemoral head (ANFH). Methods Twenty-four male adult New Zealand rabbits were made the ischemic hind l imb model and divided into 4 groups (n=6). The 3rd generation rabbit bone marrow mesenchymal stem cells (BMSCs) were transfected with the following 4 virus and were administered intramuscularly into the ischemic thigh muscle of 4 groups, respectively: rAAVhVEGF165- internal ribosome entry site (IRES)-hBMP-7 (group A), rAAV-hVEGF165-green fluorescent protein (GFP) (group B), rAAV-hBMP-7-GFP (group C), and rAAV-IRES-GFP (group D). At 8 weeks after injection, the blood flow of anterior tibial artery in the rabbit hind l imb was detected by ultrasonographic image. Immunohistochemical staining for CD34 was performed to identify the prol iferation of capillary. Another 24 male adult New Zealand rabbits were made the femur muscle pouch model and divided into 4 groups (n=6). The above 4 BMSCs transfected with rAAV were administered intramuscularly into the muscle pouch. At 8 weeks after injection, X-ray radiography was used to assess orthotopic bone formation, and von Kossa staining to show mineral ization. Results No symptoms of local or systemic toxicity were observed after rAAV injection. At 8 weeks after injection, the ratio of ischemic to normal blood flow and the number of capillaries in group A were the highest among 4 groups (P lt; 0.05). The ratio of ischemic to normal blood flow and the number of capillaries in group B were significantly higher than those in group C and group D (P lt; 0.05). However, there was no significant difference between group C and group D (P gt; 0.05). At 8 weeks after injection, orthotopic ossification and mineral ization were evidently detected in group A and group C, and group A was ber than group C. No obvious evidence of orthotopic ossification and mineral ization were observed in group B and group D. Conclusion rAAV-hVEGF165-IRES-hBMP-7 vector has the biological activities of inductive bone regeneration and angiopoiesis in vivo.