The intensive care unit (ICU) is a highly equipment-intensive area with a wide variety of medical devices, and the accuracy and timeliness of medical equipment data collection are highly demanded. The integration of the Internet of Things (IoT) into ICU medical devices is of great significance for enhancing the quality of medical care and nursing, as well as for the advancement of digital and intelligent ICUs. This study focuses on the construction of the IOT for ICU medical devices and proposes innovative solutions, including the overall architecture design, devices connection, data collection, data standardization, platform construction and application implementation. The overall architecture was designed according to the perception layer, network layer, platform layer and application layer; three modes of device connection and data acquisition were proposed; data standardization based on Integrating the Healthcare Enterprise-Patient Care Device (IHE-PCD) was proposed. This study was practically verified in the Chinese People’s Liberation Army General Hospital, a total of 122 devices in four ICU wards were connected to the IoT, storing 21.76 billion data items, with a data volume of 12.5 TB, which solved the problem of difficult systematic medical equipment data collection and data integration in ICUs. The remarkable results achieved proved the feasibility and reliability of this study. The research results of this paper provide a solution reference for the construction of hospital ICU IoT, offer more abundant data for medical big data analysis research, which can support the improvement of ICU medical services and promote the development of ICU to digitalization and intelligence.
ObjectiveTo determine the effects of the management mode participated by doctors, nurses and patients on the safety of medical tubes for restlessness patients in the Neurosurgery Intensive Care Unit (NICU). MethodsA total of 133 restlessness patients treated between May 17 and November 22, 2013 were included in the study as control group, who were admitted to the NICU before application of the management mode participated by doctors, nurses and patients; another 119 restlessness patients treated between May 17 and November 22, 2014 were included in the study as research group, who were admitted to the NICU after application of the management mode participated by doctors, nurses and patients. Then we compared the accidental extubation situation between the two groups. ResultsThe accidental extubation rate of all kinds of medical tubes in the research group was lower than that in the control group, among which the extubation rate of urethral catheter (0.67% vs. 4.32%), gastric tube (2.26% vs. 10.14%), trachea cannula (1.08% vs. 7.84%), and arterial cannulation pipeline (1.12% vs. 6.93%) was significantly different between the two groups (P<0.05). ConclusionThe management mode participated by doctors, nurses and patients can effectively reduce the accidental extubation rate of medical tubes for restlessness patients, prevent the occurrence of adverse events and ensure the treatment and nursing safety in the NICU.
Objective To investigate the drug resistance and homogeneous analysis of Acinetobacter baumanii in emergency intensive care unit ( EICU) . Methods Four multidrug-resistant Acinetobacter baumannii ( MDR-Ab) strains isolated fromnosocomial inpatients fromJuly 25 to September 7 in 2009 were collected and tested for drug sensitivity and MIC determination as well. The A. baumannii isolates were typed with pulsed-field gel electrophoresis ( PFGE) to determine whether they derived fromthe same clone.Results Four isolates from nosocomial inpatients were resistant to multiple antibiotics including carbapenem. The PFGE types identified from four isolates were A and B. The A. baumannii isolates did not derived from the same clone. Conclusion The prevalence of nosocomial infection is not due to transmission of the same strains among different individuals in EICU.
ObjectiveTo explore the psychological pressure in Intensive Care Unit (ICU) nurses and the sources of their pressure. MethodWe investigated the ICU nurses in West China Hospital with a self-designed psychological pressure questionnaire from March to September 2013. ResultsThe total stress level of ICU nurses was 2.89±0.86. The top five sources were low salaries and welfare benefits (3.37±0.61), high frequency of night work (3.31±0.88), wide need of knowledge (3.22±0.41), heavy workload (3.20±0.80) and chronic fatigue syndrome (3.19±0.75). ConclusionsGreat psychological pressure exists in ICU nurses. We urgently need effective approaches to relieve the stress of ICU nurses in order to improve the efficiency and quality of nursing service.
Objective To investigate the correlation between monocyte-lymphocyte ratio (MLR) and intensive care unit (ICU) results in ICU hospitalized patients. Methods Clinical data were extracted from Medical Information Mart for Intensive Care Ⅲ database, which contained health data of more than 50000 patients. The main result was 30-day mortality, and the secondary result was 90-day mortality. The Cox proportional hazards model was used to reveal the association between MLR and ICU results. Multivariable analyses were used to control for confounders. Results A total of 7295 ICU patients were included. For the 30-day mortality, the hazard ratio (HR) and 95% confidence interval (CI) of the second (0.23≤MLR<0.47) and the third (MLR≥0.47) groups were 1.28 (1.01, 1.61) and 2.70 (2.20, 3.31), respectively, compared to the first group (MLR<0.23). The HR and 95%CI of the third group were still significant after being adjusted by the two different models [2.26 (1.84, 2.77), adjusted by model 1; 2.05 (1.67, 2.52), adjusted by model 2]. A similar trend was observed in the 90-day mortality. Patients with a history of coronary and stroke of the third group had a significant higher 30-day mortality risk [HR and 95%CI were 3.28 (1.99, 5.40) and 3.20 (1.56, 6.56), respectively]. Conclusion MLR is a promising clinical biomarker, which has certain predictive value for the 30-day and 90-day mortality of patients in ICU.
ObjectiveTo carry out targeted surveillance on ventilator-associated pneumonia (VAP) newly defined by the Centers for Disease Control and Prevention of the United States in 2013, and to understand its applicability and influence on the prognosis, and infection rate and risk factors of the disease. MethodsTargeted surveillance was carried out on all patients receiving mechanical ventilation in the general ICU of our hospital between January and December 2014. VAP infection rate was studied, and patients were divided into groups based on the development of the disease. SPSS 18.0 was used for statistical analysis of the prognostic indicators. ResultsA total of 885 patients received mechanical ventilation and were monitored, 31 of whom had VAP. The VAP case infection rate was 3.5% and its daily infection rate was 3.9‰. The results of multiple factors regression analysis showed that age (OR=1.025, P=0.025) and combining other types of hospital infection (OR=4.874, P<0.001) were independent risk factors for the development of VAP. VAP was the independent risk factor for both length of stay in the ICU and length of mechanical ventilation (P<0.001), but it was not the independent risk factor for mortality in the ICU (P=0.515). ConclusionThe applicability of the newly defined ventilator-associated pneumonia may be under restrictions in developing countries. It may influence the outcomes of patients by prolonging the length of stay in ICU and the length of mechanical ventilation.