目的 了解综合重症监护病房(ICU)呼吸机相关性肺炎(VAP)感染率、危险因素、病原菌分布及其耐药情况,探讨有针对性的预防控制措施。 方法 2009年1月-12月综合ICU共收治患者447例,采用主动监测方法,由ICU医务人员和专职人员每日对综合ICU病房住院时间≥48 h且撤停机械通气后48 h内的患者进行VAP监测。 结果 447例患者中住院时间≥48 h的患者168例,96例患者使用呼吸机,使用呼吸机时间182 d,ICU住院总日数1 339 d,发生VAP 17例,呼吸机使用率13.59%,VAP感染率93.4例/1 000机械通气日,根据平均病情严重程度(ASIS法)调整后的VAP感染率为2.38%。呼吸机使用方式与VAP发生有关联。检出病原菌18株,全部为Gˉ杆菌,其中鲍曼不动杆菌4株,对包括硫霉素、氨曲南在内的多种抗菌药物耐药。 结论 综合ICU病房VAP感染率为2.38%,呼吸机使用不当是VAP的危险因素,VAP致病菌为Gˉ杆菌,其中鲍曼不动杆菌耐药率达100%,并呈多重耐药性;抗生素使用时间过长,预防性使用不当是致病菌产生多重耐药的重要原因。
ObjectiveTo explore the infection condition of Acinetobacter baumannii at the Neurosurgery Intensive Care Unit (NICU), and analyze the possible risk factors. MethodsWe retrospectively analyzed the clinical data of Acinetobacter baumannii infection patients with craniocerebral injury treated at the NICU between January 2011 and June 2013. We collected such information as infection patients' population distribution, infection site, invasive operations and patients' nurse-in-charge level and so on, and analyzed the possible risk factors for the infection. ResultsThirty-one patients were infected with Acinetobacter baumannii, and they were mainly distributed between 60 and 80 years old. The main infection site was lower respiratory tract, followed in order by urinary tract, gastrointestinal tract, skin and soft tissue. The risk factors might be related to age, invasive operation, nurse working ability, etc. ConclusionThe patients at the NICU are vulnerable to infection of Acinetobacter baumannii. Reducing invasive diagnosis and nursing procedures, providing optimal care, and carrying out specialized nurse standardization training may be the important means to effectively reduce the infection.
ObjectiveTo analyze and discuss the importance of non-catheter-related hospital infection in intensive care unit (ICU). MethodA prospective target monitoring of all the patients in the general ICU was carried out from January 2011 to December 2013. The hospital infection cases grouped by infection types were analyzed with SPSS 17.0. ResultsA total of 5 364 patients were monitored, 455 of whom had hospital infections totaled 616 times. The hospital infection rate was 11.5%. The amount and constituent ratio of the catheter-related infections showed a declining trend year by year, while the non-catheter-related infections revealed an escalating trend year by year. In these 455 patients, the mixed infection group had the longest hospital stay, followed by the catheter-related infection group and the non-catheter-related infection group (P<0.05). The catheter-related infection group had higher crude mortality rate than both of the mixed infection group and the non-catheter-related infection group (P<0.017). ConclusionsNon-catheter-related infections which get higher and higher proportion in ICU hospital infections should be paid more attention to, while catheter-related infections which could prolong hospitalization and increase the risk of death in ICU patients, remain the focus of the target monitoring of hospital infection in ICU.
Objective To evaluate and summarize the relevant evidence of oxygenation strategies with tracheal intubation after extubation for adult in intensive care unit (ICU), and to provide evidence-based practice for the development of scientific and effective strategies tracheal intubation after extubation for ICU adult patients. Methods Evidence-based databases, related guideline websites, association websites and original databases were searched by computer for literature about oxygenation strategies with tracheal intubation after extubation for ICU adults patients was extracted. The retrieval time was from the establishment of the databases to May 2023. Two researchers trained in evidence-based practice evaluated the quality of the included literature and extracted evidence from the literature that met the quality evaluation criteria. Results A total of 18 articles were included, including 7 guidelines, 4 clinical decisions, 2 expert consensus, 4 systematic reviews and 1 randomized controlled trial. A total of 22 pieces of best evidence were formed, including 7 aspects of basic principles, evaluation, selection, parameter setting, withdrawal, effect evaluation and precautions. ConclusionThe medical staff should select the best evidence based on the actual clinical situation and the patient’s own needs, and adjust the oxygenation strategies to reduce the rate of tracheal intubation and improve the prognosis of patients.
Objective To verify the association between admission serum phosphate level and short-term (<30 days) mortality of severe pneumonia patients admitted to intensive care unit (ICU) / respiratory intensive care unit (RICU). Methods Severe pneumonia patients admitted to the ICU/RICU of Quanzhou First Hospital Affiliated to Fujian Medical University from November 2019 to September 2021 were included in the study. Serum phosphate was demonstrated as an independent risk factor for short-term mortality of severe pneumonia patients admitted to ICU/RICU by logical analysis and receiver operator characteristic (ROC) curve. The patients were further categorized by serum phosphate concentration to explore the relationship between serum phosphate level and short-term mortality. Results Comparison of baseline indicators at admission between the survival group (n=54) and the non survival group (n=46) revealed that there was significant difference in serum phosphate level [0.9 (0.8, 1.2) mmol/L vs. 1.2 (0.9, 1.5) mmol/L, P<0.05]. Logical analysis showed serum phosphate was an independent risk factor for short-term mortality. ROC curve showed that the prediction ability of serum phosphate was close to pneumonia severity index (PSI). After combining serum phosphate with PSI score, CURB65 score, and sequential organ failure score, the predictive ability of these scores for short-term mortality was improved. Compared with the normophosphatemia group, hyperphosphatemia was found be with significantly higher short-term mortality (85.7% vs. 47.3%, P<0.05), which is absent in hypophosphatemia (25.8%). Conclusions Serum phosphate at admission has a good predictive value on short-term mortality in severe pneumonia patients admitted to the ICU/RICU. Hyperphosphatemia at admission is associated with a higher risk of short-term death.
ObjectiveTo explore the development and application of a novel ventilator alarm management model in critically ill patients receiving invasive mechanical ventilation (MV) in the intensive care unit (ICU) using machine learning (ML) and Internet of Medical Things (IoMT). The study aims to identify alarms’ intervention requirements. MethodsA retrospective cohort study and ML analysis were conducted, including adult patients receiving invasive MV in the ICU at West China Hospital from February 10, 2024, to July 22, 2024. A total of 76 ventilator alarm-related parameters were collected through the IoMT system. Feature selection was performed using a stratified approach, and six ML algorithms were applied: Gaussian Naive Bayes, K-Nearest Neighbors, Linear Discriminant Analysis, Support Vector Machine, Categorical Boosting (CatBoost), and Logistic Regression. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC-ROC). ResultsA total of 107 patients and their associated ventilator alarm records were included. Thirteen highly relevant features were selected from the 76 parameters for model training through stratified feature selection. The CatBoost model demonstrated the best predictive performance, with an AUC-ROC of 0.984 7 and an accuracy of 0.912 3 in the training set. External validation of the CatBoost model yielded an AUC-ROC of 0.805 4. ConclusionThe CatBoost-based ML model successfully constructed in this study has high accuracy and reliability in predicting the ventilator alarms in ICU patients, providing an effective tool for ventilator alarm management. The CatBoost-based ML method exhibited remarkable efficacy in predicting the necessity of ventilator intervention in critically ill ICU patients. Further large-scale multicenter studies are recommended to validate its clinical application value and promote model optimization and implementation.
Objective To explore the type and frequency of oral care practice in intensive care units (ICUs) in Mainland China, and to provide evidence and suggestions for improving oral care practice. Methods Three survey methods, including mailing questionnaires to ICUs of Grade 3A hospitals, consulting experts in this field and visiting accessible ICUs, were used to survey current oral care practice in Mainland China. Results A total of 184 questionnaires were given to the subjects, of which 79 effective ones were collected, and the response rate was 42.93%. All 79 respondents considered oral care very unimportant, and 98.7% of the ICUs performed oral care in different ways. Currently, the cotton ball wipe-off method was the most frequently used for oral care (62.5%), with an average (9.1± 5.1) min per time, twice or three times daily. The mouthwashes often used were saline (76.1%), solutions containing sodium bicarbonate (22.8%), furacilin (13.9%), and hydrogen dioxide (13.9%). Conclusion The oral care practice for the critically-ill patients in ICUs of China is unsatisfactory, although it is perceived as an important item in nursing care. More evidence–based training should be given and it is necessary to establish a national oral care guideline for critically-ill patients.
Objective To analyze risk factors for prolonged stay in intensive care unit (ICU) after cardiac valvular surgery. Methods Between January 2005 and May 2005, five hundred and seven consecutive patients undergone cardiac valvular surgery were divided into two groups based on if their length of ICU stay more than 5 days (prolonged stay in ICU was defined as 5 days or more). Group Ⅰ: 75 patients required prolonged ICU stay. Group Ⅱ: 432 patients did not require prolonged ICU stay. Univariate and multivariate analysis (logistic regression) were used to identify the risk factors. Results Seventyfive patients required prolonged ICU stay. Univariate risk factors showed that age, the proportion of previous heart surgery, smoking history and repeat cardiopulmonary bypass (CPB) support, cardiothoracicratio, the CPB time and aortic crossclamping time of group Ⅰ were higher or longer than those of group Ⅱ. The heart function, left ventricular ejection fraction (LVEF), pulmonary function of group Ⅰwere worse than those of group Ⅱ(Plt;0.05, 0.01). Logistic regression identified that preoperative age≥65 years (OR=4.399), LVEF≤0.50(OR=2.788),cardiothoracic ratio≥0.68(OR=2.411), maximal voluntary ventilation observed value/predicted value %lt;71%(OR=4.872), previous heart surgery (OR=3.241) and repeat CPB support during surgery (OR=18.656) were final risk factors for prolonged ICU stay. Conclusion Prolonged ICU stay after cardiac valvular surgery can be predicted through age, LVEF, cardiothoracic ratio, maximal voluntary ventilation, previous heart surgery and repeat CPB support during surgery. The patients with these risk factors need more preoperative care and postoperative care to reduce mortality, morbidity and avoid prolonged ICU stay after cardiac valvular surgery.