west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "项舟" 68 results
  • LOCKING COMPRESSION PLATE FIXATION FOR PERIPROSTHETIC FEMORAL FRACTURE

    Objective To introduce a method for fixation in periprosthetic fracture with locking compression plate (LCP). Methods Duringthe surgery, a long 12-hole LCP was placed to the lateral side of the femur. Six holes of the plate were placed proximal to the main fracture line to make sure that there could be enough cortex units for rigid fixation of proximal fragments. Locking screws used except for the most proximal hole where a 4.5 mm screw was used instead. Results The patient was pain free at the fracture site one week after the surgery,and was able to walk with a cane 3 months after the surgery. Bone union was evident radiographically 3 months after the surgery. There was no loose signs around the stem. Six months after the surgery, the patient recovered full function without pain. Conclusion In our experience from this case, LCP in treating periprosthetic fracture was easy and less time consuming, more over, extensive periosteal stripping could be avoided. LCP is a good choice in treating some periprosthetic fractures.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF CONTROLLED RELEASING DELIVERY OF BIOLOGICAL FACTORS FOR CARTILAGE REPAIR

    ObjectiveTo summarize the recent progress of the controlled releasing delivery of biological factors for cartilage repair. MethodsThe recently published 1iterature at home and abroad on the controlled releasing delivery of biological factors for cartilage repair was reviewed and summarized. ResultsVarious biological factors have been applied for repairing cartilage. For better cartilage repair effects, controlled releasing delivery of biological factors can be applied by means of combining biological factors with degradable biomaterials, or by micro- and nano-particles. Meanwhile, multiple biologic delivery and temporally controlled delivery are also inevitable choices. ConclusionAlthough lots of unsolved problems exist, the controlled releasing delivery of biological factors has been a research focus for cartilage repair because of the controllability and delicacy.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF CO-CULTURE SYSTEM FOR CONSTRUCTING VASCULARIZED TISSUE ENGINEERED BONE

    ObjectiveTo review the research progress of the co-culture system for constructing vascularized tissue engineered bone. MethodsThe recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. ResultsThe construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. ConclusionThe strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

    Release date: Export PDF Favorites Scan
  • REGENERATION STRATEGIES OF INTERVERTEBRAL DISC

    Objective To review the research progress of the seed cells, scaffolds, growth factors, and the prospects for clinical application of the intervertebral disc regeneration. Methods The recent literature concerning the regeneration strategies and tissue engineering for treatment of degenerative intervertebral disc disease was extensively reviewed and summarized. Results Seed cells based on mesenchymal stem cells (MSCs) and multiple-designed biomimetic scaffolds are the hot topic in the field of intervertebral disc regeneration. It needs to be further investigated how to effectively combine the interactions of seed cells, scaffolds, and growth factors and to play their regulation function. Conclusion The biological regeneration of intervertebral disc would have a very broad prospects for clinical application in future.

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • POTENTIAL SEEDING CELLS FOR CARTILAGE TISSUE ENGINEERING——BONE MARROW STROMAL STEM CELLS

    OBJECTIVE To review the recent research progress of bone-marrow stromal stem cells (BMSCs) in the conditions of culture in vitro, chondrogenic differentiation, and the application in cartilage tissue engineering. METHODS: Recent original articles related to such aspects of BMSCs were reviewed extensively. RESULTS: BMSCs are easy to be isolated and cultivated. In the process of chondrogenesis of BMSCs, the special factors and interaction between cells are investigated extensively. BMSCs have been identified to form cartilage in vivo. One theory is the committed chondrocyte from BMSCs is only a transient stage. CONCLUSION: BMSCs are the alternative seeding cells for cartilage tissue engineering. The conditions promoting mature chondrocyte should be further investigated.

    Release date: Export PDF Favorites Scan
  • THE ECCECT OF INSULIN LIKE GROWTH FACTOR ON CYCLIC CHANGE OF TENDON CELL

    In order to investigate the effect of insulin-like growth factor-1 (IGF-1 on the cyclic change of tendon cell, the 6th generation of cultured tendon cell were selected, and 20 ng/ml IGF-1 was added to the medium. After 48 hours, the cells were determined by flow cytometer, as well as the control cells. The results showed that the time of G1 phase, DNA synthesis phase and G2M phase in IGF-1 group were 11.8 hours, 21.4 hours and 6.8 hours respectively, while those were 25.6 hours 22.6 hours and 21.8 hours respectively in the control group. It was showed that the time needed for G1 phase and G2M phase was shortened by IGF-1.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • ALLOGENEIC HUMERAL SHAFT TRANSPLANTATION WITH VASCULAR ANASTOMOSIS: TWENTY YEARS FOLLOW-UP

    OBJECTIVE: To sum up the clinical results of allogeneic humeral transplantation with vascular anastomosis, and evaluate the clinical significance. METHODS: From September to November 1979, 1 case with humeral shaft defect of 10 cm in length and 2 cases with tibia shaft defect of 12 cm in length were repaired by allogeneic humeral transplantation with vascular anastomosis. Azathiopurine and prednisone were applied for 3 months postoperatively. All cases were followed up for 20 years. RESULTS: Case 1 recovered well with good bone union and reconstruction after operation, and could work normally. In case 2, five chronic rejections were occurred during 3 years after operation, and recovered after treatment, the allograft bone was fractured after 2 years of operation, and unioned by autogeneous iliac bone transplantation. In case 3, the distal part of allograft bone was fractured after 46 months, and unioned by autogeneous iliac bone transplantation. The middle part of allograft bone was non-unioned after 20 years follow-up in case 3, but the patient could still work normally. CONCLUSION: The clinical results of allogeneic long bone transplantation can be improved by rational tissue matching test, application of effective immunosuppressive drugs in a certain period according to the principles of modern transplantation immunology.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • THE APPLICATION OF BASIC FIBROBLAST GROWTH FACTOR IN TENDON TISSUE ENGINEERING

    Objective To review the recent researches of basic fibroblast growth factor (bFGF) in tendon tissue engineering. Methods Recentoriginal related literature was extensively reviewed and analyzed. Results bFGF played an important role in establishing standard tendon tissue engineering cell lines, inducing the compound and analysis of extracellular matrix, enhancing interactions between cells and extracellular matrix and accelerating tissue engineering materials’ neovascularization. Conclusion The progresses in increasing endogenetic bFGF expression, controlling the release of exogenous bFGF and improving the bioutilization of bFGF has laid foundation for wider use of bFGF in tendon tissue engineering.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
  • BIOMECHANICAL EVALUATION OF STABILITY OF THE VOLAR CAPSULAR LIGAMENT COMPLEX

    【Abstract】 Objective To investigate the effect of the volar capsular l igament complex on stabil ity of the wrist jointand to provide basic biomechanical theoretical criteria for cl inic appl ication of the external fixator. Methods Nine upperl imbs specimens (left 6, right 3) were taken from fresh adult cadavers to make wrist joint-bone capsular l igament complex specimens. Firstly, soft tissues of forearms and hands were resected and capsular membranes and l igaments were reserved to make the bone-articular l igament complex (normal specimen). Secondly, the volar capsular l igament complex was cut off from radial malleolus to ulnar malleolus (impaired specimen). Thirdly, the impaired volar capsular l igament complex was interruptedly sutured by the use of 4# suture silk (repaired specimen). To simulate cl inical operation with external fixator, the biomechanical test was done according to the sequence (normal, impaired, repaired, repaired and fixed, impaired and fixed). Statistical significance was analyzed through selected loads at the three different shifts (1.5, 2.0, 2.5 cm). Results According to the sequence (normal, impaired, repaired, repaired and fixed, impaired and fixed), when the shift was 1.5 cm, the different respective loads were (60.74 ± 20.60), (35.23 ± 13.88), (44.36 ± 20.78), (168.40 ± 29.21) and (139.00 ± 33.18) N, respectively. When the shift was 2.0 cm, the different loads were (138.46 ± 12.93), (87.17 ± 24.22), (97.52 ± 23.29), (289.00 ± 54.29) and (257.98 ± 55.74) N, respectively. When the shift was 2.5 cm, the different loads were (312.87 ± 37.15), (198.16 ± 37.14), (225.66 ± 30.96), (543.15 ± 74.33) and (450.35 ± 29.38) N, respectively. There was no statistically significant difference between the impaired and repaired specimens (P gt; 0.05). Similarly, there was statistically significant difference among the rest specimens (P lt; 0.05). The same statistical results were obtained when the two different shifts were compared. There was statistically significant difference at the three different shifts for the same specimen (P lt; 0.05). Conclusion Volar capsular l igament complex is an important anatomic structure to keep stabil ity of the wrist joint. The carpal instabil ity arises out of the injured complex. Repairing the injured complex only can not immediately restore stabil ity of the wrist joint. The external fixator can effectively help to diminish the relative shift of the impaired capsular l igament complex, to reduce the load of the repaired complex and to protect the complex accordingly. The device plays an important role in maintaining stabil ity of the wrist joint.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • Early effect of graphene oxide-carboxymethyl chitosan hydrogel loaded with interleukin 4 and bone morphogenetic protein 2 on bone immunity and repair

    ObjectiveTo investigate the effect of graphene oxide (GO)-carboxymethyl chitosan (CMC) hydrogel loaded with interleukin 4 (IL-4) and bone morphogenetic protein 2 (BMP-2) on macrophages M2 type differentiation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).MethodsGO solution was mixed with CMC, then the phosphate buffered saline (PBS), IL-4, BMP-2, or IL-4+BMP-2 were added to prepare different GO-CMC hydrogel scaffolds with or without different cytokines under crosslinking agents. The characteristics of pure GO-CMC hydrogel were characterized by gross observation, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR), and the CMC hydrogel was used as control. The sustained release of GO-CMC hydrogels with different cytokines was also tested. Macrophages were isolated and cultured from female Sprague Dawley rats aged 4-5 weeks, and then cultured with GO-CMC hydrogels with and without different cytokines, respectively. CD206 immunofluorescence staining was used to detect the differentiation of macrophages after 24 hours. The 3rd generation of rats BMSCs were cultured with GO-CMC hydrogels with and without different cytokines respectively for osteogenic induction. The early osteogenesis was observed by alkaline phosphatase (ALP) staining after 10 days, and the late osteogenesis was observed by alizarin red staining after 21 days.ResultsGenerally, GO-CMC hydrogel was brown and translucent. SEM showed that the pore diameter and wall thickness of GO-CMC hydrogel were similar to that of CMC hydrogel, but the inner wall roughness increased. FTIR test showed that CMC polymerized to form hydrogel. In vitro, the sustained release experiments showed that the properties of GO-CMC hydrogels loaded with different cytokines were similar. CD206 immunofluorescence detection showed that GO-CMC hydrogels could induce macrophages differentiation into M2-type. ALP and alizarin red staining showed that GO-CMC hydrogels could induce BMSCs osteogenic differentiation, in which GO-CMC hydrogel loaded with IL-4+BMP-2 showed the most significant effect (P<0.05).ConclusionThe GO-CMC hydrogel loaded with IL-4 and BMP-2 can induce macrophages differentiation into M2-type and enhance the ability of BMSCs with osteogenic differentiation in vitro, which provide a new strategy for bone defect repair and immune regulation.

    Release date:2020-08-19 03:53 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content