Heart valve disease is one of the three most common cardiac diseases,and the patients undergoing valve surgery have been increasing every year. Due to the high mortality,increasing number of valve surgeries,and increasing economic burdens on public health, a lot of risk models for valve surgery have been developed by various countries based on their own clinical data all over the world,which aimed to regulate the preoperative risk assessment and decrease the perioperative mortality. Over the last 10 years, a number of excellent risk models for valve surgery have finally been developed including the Society of Thoracic Surgeons(STS), the Society of Thoracic Surgeons’ National Cardiac Database (STS NCD),New York Cardiac Surgery Reporting System(NYCSRS),the European System for Cardiac Operative Risk Evaluation(EuroSCORE),the Northern New England Cardiovascular Disease Study Group(NNECDSG),the Veterans Affairs Continuous Improvement in Cardiac Surgery Study(VACICSP),Database of the Society of Cardiothoracic Surgeons of Great Britain and Ireland(SCTS), and the North West Quality Improvement Programme in Cardiac Interventions(NWQIP). In this article, we reviewed these risk models which had been developed based on the multicenter database from 1999 to 2009, and summarized these risk models in terms of the year of publication, database, valve categories, and significant risk predictors.
ObjectiveTo systematically evaluate the risk prediction model of anastomotic fistula after radical resection of esophageal cancer, and to provide objective basis for selecting a suitable model. MethodsA comprehensive search was conducted on Chinese and English databases including CNKI, Wanfang, VIP, CBM, PubMed, EMbase, Web of Science, The Cochrane Library for relevant studies on the risk prediction model of anastomotic fistula after radical resection of esophageal cancer from inception to April 30, 2023. Two researchers independently screened literatures and extracted data information. PROBAST tool was used to assess the risk of bias and applicability of included literatures. Meta-analysis was performed on the predictive value of common predictors in the model with RevMan 5.3 software. ResultsA total of 18 studies were included, including 11 Chinese literatures and 7 English literatures. The area under the curve (AUC) of the prediction models ranged from 0.68 to 0.954, and the AUC of 10 models was >0.8, indicating that the prediction performance was good, but the risk of bias in the included studies was high, mainly in the field of research design and data analysis. The results of the meta-analysis on common predictors showed that age, history of hypertension, history of diabetes, C-reactive protein, history of preoperative chemotherapy, hypoproteinemia, peripheral vascular disease, pulmonary infection, and calcification of gastric omental vascular branches are effective predictors for the occurrence of anastomotic leakage after radical surgery for esophageal cancer (P<0.05). ConclusionThe study on the risk prediction model of anastomotic fistula after radical resection of esophageal cancer is still in the development stage. Future studies can refer to the common predictors summarized by this study, and select appropriate methods to develop and verify the anastomotic fistula prediction model in combination with clinical practice, so as to provide targeted preventive measures for patients with high-risk anastomotic fistula as soon as possible.
Objective To explore the risk factors of chronic postoperative inguinal pain (CPIP) after transabdominal preperitoneal hernia repair (TAPP), establish and verify the risk prediction model, and then evaluate the prediction effectiveness of the model. Methods The clinical data of 362 patients who received TAPP surgery was retrospectively analyzed and divided into model group (n=300) and validation group (n=62). The risk factors of CPIP in the model group were screened by univariate analysis and multivariate logistic regression analysis, and the risk prediction model was established and tested. Results The incidence of CPIP at 6 months after operation was 27.9% (101/362). Univariate analysis showed that gender (χ2= 12.055, P=0.001), age (t=–4.566, P<0.01), preoperative pain (χ2=44.686, P<0.01) and early pain at 1 week after operation (χ2=150.795, P<0.01) were related to CPIP. Multivariate logistic regression analysis showed that gender, age, preoperative pain, early pain at 1 week after operation, and history of lower abdominal surgery were independent risk predictors of CPIP. The area under curve (AUC) of the receiver operating characteristic (ROC) of the risk prediction model was calculated to be 0.933 [95%CI (0.898, 0.967)], and the optimal cut-off value was 0.129, while corresponding specificity and sensitivity were 87.6% and 91.5% respectively. The prediction accuracy, specificity and sensitivity of the model were 91.9% (57/62), 90.7% and 94.7%, respectively when the validation group data were substituted into the prediction model. Conclusion Female, age≤64 years old, preoperative pain, early pain at 1 week after operation and without history of lower abdominal surgery are independent risk factors for the incidence of CPIP after TAPP, and the risk prediction model established on this basis has good predictive efficacy, which can further guide the clinical practice.
Objective To construct a risk prediction score model for serious adverse event (SAE) after cardiac catheterization in patients with adult congenital heart disease (ACHD) and pulmonary hypertension (PH) and verify its predictive effect. Methods The patients with PH who underwent cardiac catheterization in Wuhan Asian Heart Hospital Affiliated to Wuhan University of Science and Technology from January 2018 to January 2022 were retrospectively collected. The patients were randomly divided into a model group and a validation group according to the order of admission. The model group was divided into a SAE group and a non-SAE group according to whether SAE occurred after the catheterization. The data of the two groups were compared, and the risk prediction score model was established according to the results of multivariate logistic regression analysis. The discrimination and calibration of the model were evaluated using the area under the receiver operating characteristic (ROC) curve and the Hosmer-Lemeshow test, respectively. Results A total of 758 patients were enrolled, including 240 (31.7%) males and 518 (68.3%) females, with a mean age of 43.1 (18.0-81.0) years. There were 530 patients in the model group (47 patients in the SAE group and 483 patients in the non-SAE group) and 228 patients in the validation group. Univariate analysis showed statistical differences in age, smoking history, valvular disease history, heart failure history, N-terminal pro-B-type natriuretic peptide, and other factors between the SAE and non-SAE groups (P<0.05). Multivariate analysis showed that age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, surgical general anesthesia, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients (P<0.05). The risk prediction score model had a total score of 0-139 points and patients who had a score>50 points were high-risk patients. Model validation results showed an area under the ROC curve of 0.937 (95%CI 0.897-0.976). Hosmer-Lemeshow goodness-of-fit test: χ2=3.847, P=0.797. Conclusion Age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, general anesthesia for surgery, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients. The risk prediction model based on these factors has a high predictive value and can be applied to the risk assessment of SAE after interventional therapy in ACHD-PH patients to help clinicians perform early intervention.
Objective To explore the risk factors for long-term death of patients with acute myocardial infarction (AMI) and reduced left ventricular ejection fraction (LVEF), and develop and validate a prediction model for long-term death. Methods This retrospective cohort study included 1013 patients diagnosed with AMI and reduced LVEF in West China Hospital of Sichuan University between January 2010 and June 2019. Using the RAND function of Excel software, patients were randomly divided into three groups, two of which were combined for the purpose of establishing the model, and the third group was used for validation of the model. The endpoint of the study was all-cause mortality, and the follow-up was until January 20th, 2021. Cox proportional hazard model was used to evaluate the risk factors affecting the long-term death, and then a prediction model based on those risk factors was established and validated. Results During a median follow-up of 1377 days, 296 patients died. Multivariate Cox regression analysis showed that age≥65 years [hazard ratio (HR)=1.842, 95% confidence interval (CI) (1.067, 3.179), P=0.028], Killip class≥Ⅲ[HR=1.941, 95%CI (1.188, 3.170), P=0.008], N-terminal pro-brain natriuretic peptide≥5598 pg/mL [HR=2.122, 95%CI (1.228, 3.665), P=0.007], no percutaneous coronary intervention [HR=2.181, 95%CI (1.351, 3.524), P=0.001], no use of statins [HR=2.441, 95%CI (1.338, 4.454), P=0.004], and no use of β-blockers [HR=1.671, 95%CI (1.026, 2.720), P=0.039] were independent risk factors for long-term death. The prediction model was established and patients were divided into three risk groups according to the total score, namely low-risk group (0-2), medium-risk group (4-6), and high-risk group (8-12). The results of receiver operating characteristic curve [area under curve (AUC)=0.724, 95%CI (0.680, 0.767), P<0.001], Hosmer-Lemeshow test (P=0.108), and Kaplan-Meier survival curve (P<0.001) showed that the prediction model had an efficient prediction ability, and a strong ability in discriminating different groups. The model was also shown to be valid in the validation group [AUC=0.758, 95%CI (0.703, 0.813), P<0.001]. Conclusions In patients with AMI and reduced LVEF, age≥65 years, Killip class≥Ⅲ, N-terminal pro-brain natriuretic peptide≥5598 pg/mL, no percutaneous coronary intervention, no use of statins, and no use of β-blockers are independent risk factors for long-term death. The developed risk prediction model based on these risk factors has a strong prediction ability.
Acute kidney injury (AKI) is a complication with high morbidity and mortality after cardiac surgery. In order to predict the incidence of AKI after cardiac surgery, many risk prediction models have been established worldwide. We made a detailed introduction to the composing features, clinical application and predictive capability of 14 commonly used models. Among the 14 risk prediction models, age, congestive heart failure, hypertension, left ventricular ejection fraction, diabetes, cardiac valve surgery, coronary artery bypass grafting (CABG) combined with cardiac valve surgery, emergency surgery, preoperative creatinine, preoperative estimated glomerular filtration rate (eGFR), preoperative New York Heart Association (NYHA) score>Ⅱ, previous cardiac surgery, cadiopulmonary bypass (CPB) time and low cardiac output syndrome (LCOS) are included in many risks prediction models (>3 times). In comparison to Mehta and SRI models, Cleveland risk prediction model shows the best discrimination for the prediction of renal replacement therapy (RRT)-AKI and AKI in the European. However, in Chinese population, the predictive ability of the above three risk prediction models for RRT-AKI and AKI is poor.
Breast cancer is the most common malignant tumor among Chinese females. We should focus on the research of risk assessment models of gene-environmental factors to guide primary and secondary prevention, and this public health strategy is expected to maximize the health benefits of the population. This paper introduces previous studies of risk factors and predictive models for Chinese breast cancer and provides three points for future research. Firstly, we should explore the specific risk factors related to breast cancer risk in Chinese population, such as overweight or reproductive control measures. Secondly, we should use evidence-based and machine learning methods to select environmental-genetic risk factors. Finally, we should set up an information collective platform for breast cancer risk factors to test the validity of prediction models based on a long-term follow-up cohort of Chinese females.
ObjectiveTo analyze the influencing factors of acute exacerbation readmission in elderly patients with chronic obstructive pulmonary disease (COPD) within 30 days, construct and validate the risk prediction model.MethodsA total of 1120 elderly patients with COPD in the respiratory department of 13 general hospitals in Ningxia from April 2019 to August 2020 were selected by convenience sampling method and followed up until 30 days after discharge. According to the time of filling in the questionnaire, 784 patients who entered the study first served as the modeling group, and 336 patients who entered the study later served as the validation group to verify the prediction effect of the model.ResultsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors were the influencing factors of patients’ readmission to hospital. The risk prediction model was constructed: Z=–8.225–0.310×assignment of education level+0.564×assignment of smoking status+0.873×assignment of number of acute exacerbations of COPD hospitalizations in the past 1 year+0.779×assignment of regular use of medication+0.617×assignment of rehabilitation and exercise +0.970×assignment of nutritional status+assignment of seasonal factors [1.170×spring (0, 1)+0.793×autumn (0, 1)+1.488×winter (0, 1)]. The area under ROC curve was 0.746, the sensitivity was 75.90%, and the specificity was 64.30%. Hosmer-Lemeshow test showed that P=0.278. Results of model validation showed that the sensitivity, the specificity and the accuracy were 69.44%, 85.71% and 81.56%, respectively.ConclusionsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors are the influencing factors of patients’ readmission to hospital. The risk prediction model is constructed based on these factor. This model has good prediction effect, can provide reference for the medical staff to take preventive treatment and nursing measures for high-risk patients.
Objective To construct and compare risk prediction models for skip metastasis in papillary thyroid carcinoma (PTC) patients with lateral lymph node metastasis (N1b) by using multiple machine learning algorithms, and to provide clinical guidance through model interpretation and visualization. MethodsA retrospective analysis of 573 N1b PTC patients who were admitted between November 2011 and August 2024 in Zhongshan Hospital Affiliated to Xiamen University and undergone primary surgery were conducted. Patients were randomly divided into training (n=402) and testing (n=171) sets according to 7∶3 ratio by using R package caret. The training set was used to build the model, and the test set was used for model validation. Five machine learning models including logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) by using 10-fold cross-validation on the training set to determine hyperparameters, then refited the models and validate them on the test set. Model performance was evaluated via area under the curve (AUC). Shapley additive explanations (SHAP) was employed for interpretability, and the optimal model was deployed as a web-based calculator using R Shiny. ResultsThe overall skip metastasis rate was 12.7% (73/573) in N1b PTC patients, with 12.9% (52/402) in the training set and 12.3% (21/171) in the testing set (P>0.05 for baseline comparisons). Eleven predictors (age, age≥55, sex, maximum tumor diameter, maximum tumor diameter≤1 cm, upper pole involvement, multifocality, unilateral lobe involvement, extrathyroidal extension, capsular invasion, and Hashimoto thyroiditis) were used to develop the model. Each model’s AUC of the training set: XGBoost, 0.824±0.070 [95%CI (0.780, 0.868)]; LR, 0.802±0.065 [95%CI (0.762, 0.842)]; DT, 0.773±0.141 [95%CI (0.685, 0.861)]; RF, 0.767±0.068 [95%CI (0.725, 0.809)]; SVM, 0.647±0.103 [95%CI (0.583, 0.711)]. Each model’s AUC of the testing set: XGBoost, 0.777 [95%CI (0.667, 0.887); LR, 0.769 [95%CI (0.655, 0.883)]; DT, 0.737 [95%CI (0.615, 0.858)]; RF, 0.757 [95%CI (0.649, 0.865)]; SVM, 0.674 [95%CI (0.522, 0.826)]. XGBoost was the optimum model which achieved the highest AUC in both training and testing sets. SHAP analysis identified the top six predictors: upper pole involvement (mean absolute SHAP: 0.249), maximum tumor diameter (0.119), extrathyroidal extension (0.078), age (0.065), unilateral lobe involvement (0.018), and capsular invasion (0.013). The XGBoost-based web calculator was accessible. ConclusionsThe XGBoost model demonstrates superior predictive performance among five machine learning algorithms. The developed web-based calculator offers clinical utility for assessing skip metastasis risk in N1b PTC patients.