OBJECTIVE: To sum up the experimental development and clinical application of prefabricated flap. METHODS: The reported experimental results and clinical application of prefabricated flap extensively reviewed. RESULTS: Previous studies had proved that the revascularization of prefabricated flap mainly through anastomoses of implanted vessels and the original vessels of the flap, the implanted vessels slowly formed a new and complete blood vessel network, which could dominate the whole flap, three to four weeks later, the new vessels were mature and the flap could be transferred. Clinically, the superficial temporal vessels, gastroepiploic vessels, circumflex femoral vessels and thoracodorsalis vessels could be harvested for prefabricated flap with satisfactory results. CONCLUSION: Prefabricated flap provides a new method for the treatment of complicated defects.
Perfusion of free flaps from groin of rabbits, after 12 hours of complete ischemia, with superoxide dismutase (SOD), an oxygen free radical scavenger, would significantly increase the survival rate of these flaps from 18.75% to 75% in the control group. Tissue levels of SOD and malonydialdehyde (MDA, an end product of lipoperoxidation) were measured before ischemia, after ischemia but before reperfusion, and 60 minites after reperfusion. In untreated flap, after 12 hours- ischemia, the SOD content of skin decreased significantly as compared with the SOD content before ischemia, and reperfusion further decreased SOD activity, while the concentration of MDA increased after ischemia and further increased after reperfusion. In the treated flaps, the concentration of SOD was not decrease and MADnot increased after reperfusion. There was a negative correlation between the values of SOD and MDA. These findings suggested that free oxygen radicals playedan important role in the free flap ischemia reperfusion injury. SOD could increase the survival of ischemic free-flaps by reducing lipoperoxidation. The results had significant clinical implications with regard to organ preservation and transplantation.
OBJECTIVE To repair facial and neck scar using tissue expanding technique. METHODS From January 1991 to January 1995, 16 cases with facial and neck scar were treated. Multiple tissue expanders were put under the normal skin of facial and neck area, after being fully expanded, the scars were excised and the expended skin flaps were transplanted to cover the defects. The size and number of tissue expanders were dependent on the location of the scars. Normally, 5 to 6 ml expanding volume was needed to repair 1 cm2 facial and neck defect. The incisions should be chosen along the cleavage lines or in the inconspicuous area, such as the nasolabial fold or submandibular region. The design of flap was different in the face and in the neck. In the face, direct advanced flap was most common used, whereas in the neck, transposition flap was often used. Appropriate tension was needed to achieve smooth and cosmetic effect. It was compared the advantages and disadvantages of several methods for repair of the defect after facial and neck scar excision. RESULTS Fifteen cases had no secondary deformity after scar excision. Among them, 1 case showed blood circulation disturbance and cured through dressing change. Ten cases were followed up and showed better color and texture in the flap, and satisfactory appearances. CONCLUSION Tissue expanding technique is the best method for the repair of facial and neck scar, whenever there is enough expandable normal skin.