This study aims to explore the diagnosis in patients with Alzheimer's disease (AD) based on magnetic resonance (MR) images, and to compare the differences of bilateral hippocampus in classification and recognition. MR images were obtained from 25 AD patients and 25 normal controls (NC) respectively. Three-dimensional texture features were extracted from bilateral hippocampus of each subject. The texture features that existed significant differences between AD and NC were used as the features in a classification procedure. Back propagation (BP) neural network model was built to classify AD patients from healthy controls. The classification accuracy of three methods, which were principal components analysis, linear discriminant analysis and non-linear discriminant analysis, was obtained and compared. The correlations between bilateral hippocampal texture parameters and Mini-Mental State Examination (MMSE) scores were calculated. The classification accuracy of nonlinear discriminant analysis with a neural network model was the highest, and the classification accuracy of right hippocampus was higher than that of the left. The bilateral hippocampal texture features were correlated to MMSE scores, and the relative of right hippocampus was higher than that of the left. The neural network model with three-dimensional texture features could recognize AD patients and NC, and right hippocampus might be more helpful to AD diagnosis.
Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.
With the exacerbation of aging population in China, the number of patients with Alzheimer's disease (AD) is increasing rapidly. AD is a chronic but irreversible neurodegenerative disease, which cannot be cured radically at present. In recent years, in order to intervene in the course of AD in advance, many researchers have explored how to detect AD as early as possible, which may be helpful for effective treatment of AD. Imaging genomics is a kind of diagnosis method developed in recent years, which combines the medical imaging and high-throughput genetic omics together. It studies changes in cognitive function in patients with AD by extracting effective information from high-throughput medical imaging data and genomic data, providing effective guidance for early detection and treatment of AD patients. In this paper, the association analysis of magnetic resonance image (MRI) with genetic variation are summarized, as well as the research progress on AD with this method. According to complexity, the objects in the association analysis are classified as candidate brain phenotype, candidate genetic variation, genome-wide genetic variation and whole brain voxel. Then we briefly describe the specific methods corresponding to phenotypic of the brain and genetic variation respectively. Finally, some unsolved problems such as phenotype selection and limited polymorphism of candidate genes are put forward.
Objective To systematically review the efficacy, safety, cost-effectiveness, indications, contraindications, and ethical issues for surgical treatment of Alzheimer's disease (AD). Methods The CNKI, WanFang Data, VIP, PubMed, Web of Science, Embase and Cochrane Library databases were electronically searched to collect for relevant studies on surgical treatment of AD from inception to November 26, 2024. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of the included studies. Meta-analysis was performed by using Stata 17 software. Results A total of 59 studies were included. The results revealed that surgical treatment for AD had higher safety (OR=0.44, 95%CI 0.17 to 0.72, P<0.05), and patients had better ADAS-cog scores (SMD=0.54, 95%CI 0.18 to 0.90, P<0.05), with statistically significant differences. The economic burden of surgical treatment for AD increased with the severity of the disease. Deep brain stimulation may offer high economic benefits in the treatment of mild AD. The surgical indications can be summarized as: short disease duration, mild to moderate severity, and insufficient response to pharmacological interventions. Regarding contraindications, analysis of the included literature identified four core aspects: physiological and pathological contraindications, medical comorbidities and surgical risk contraindications, cognitive and psychological factor contraindications, and other contraindications. Ethical issues can be categorized into: informed consent and autonomy, ethical review and approval of research, and assessment of risks and benefits. Conclusion Current evidence suggests that surgical treatment for AD has certain benefits, but the surgical approaches for treating AD are still in the exploratory stage. Limited by the number and quality of the included studies, the above conclusion still requires more high-quality research to be verified.
It is generally considered that various regulatory activities between genes are contained in the gene expression datasets. Therefore, the underlying gene regulatory relationship and the biologically useful information can be found by modeling the gene regulatory network from the gene expression data. In our study, two unsupervised matrix factorization methods, independent component analysis (ICA) and nonnegative matrix factorization (NMF), were proposed to identify significant genes and model the regulatory network using the microarray gene expression data of Alzheimer's disease (AD). By bio-molecular analyzing of the pathways, the differences between ICA and NMF have been explored and the fact, which the inflammatory reaction is one of the main pathological mechanisms of AD, is also emphasized. It was demonstrated that our study gave a novel and valuable method for the research of early detection and pathological mechanism, biomarkers' findings of AD.
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disease with progressive cognitive dysfunction as the main feature. How to identify the early changes of cognitive dysfunction and give appropriate treatments is of great significance to delay the onset of dementia. Some other researches have shown that AD is associated with abnormal changes of brain networks. To study human brain functional connectivity characteristics in AD, 16 channels electroencephalogram (EEG) were recorded under resting and eyes-closed condition in 15 AD patients and 15 subjects in the control group. The synchronization likelihood of the full-band and alpha-band (8-13 Hz) data were evaluated, which resulted in the synchronization likelihood coefficient matrices. Considering a threshold T, the matrices were converted into binary graphs. Then the graphs of two groups were measured by topological parameters including the clustering coefficient and global efficiency. The results showed that the global efficiency of the network in full-band EEG was significantly smaller in AD group for the values of T=0.06 and T=0.07, but there was no statistically significant difference in the clustering coefficients between the two groups for the values of T (0.05-0.07). However, the clustering coefficient and global efficiency were significantly lower in AD patients at alpha-band for the same threshold range than those of subjects in the control group. It suggests that there may be decreases of the brain connectivity strength in AD patients at alpha-band of the resting-state EEG. This study provides a support for quantifying functional brain state of AD from the brain network perspective.
ObjectiveTo systematically review the relationship between Cadmium (Cd) level and Alzheimer's disease (AD). MethodWe searched PubMed, EMbase, CNKI, WanFang Data and CBM databases from inception to December 2014 to collect case-control studies about the relationship between Cd level and AD. Two reviewers screened literature, extracted data and evaluated the risk of bias of included studies, and then meta-analysis was performed by using RevMan 5.3 software. ResultsA total of 11 studies were included, among them 8 studies were included into final meta-analysis. Three studies including 154 patients and 141 controls reported the relationship of serum Cd concentrations and AD, and the result of meta-analysis showed that the higher serum Cd level was found in the AD group than the control group (SMD=0.36, 95%CI 0.12 to 0.59, P=0.003). Six studies including 358 patients and 423 controls reported the relationship of blood Cd concentrations and AD, and the result of meta-analysis showed that there was no significant difference of blood Cd levels between both groups (SMD=0.35, 95%CI -0.14 to 0.84, P=0.16). ConclusionSerum Cd concentrations may be associated with AD, but blood Cd concentrations not. Due to the limitation of quality and quantity of the included studies, more high quality studies are needed to verify the above conclusion.
Alzheimer's disease is a common neuro-degenerative disease. The clinical diagnosis mainly depends on the patient's complaint, the score of mini-mental state examination and Montreal cognitive assessment scale, and the comprehensive judgment of MRI and other imaging examinations. Retina is homologous to brain tissue, and their vascular systems have similar physiological characteristics to small blood vessels in the brain. Numerous studies found that the thickness of retinal nerve fiber layer, visual function, retinal blood vessels and retinal oxygen saturation were changed in AD patients to different degrees. To explore the formation mechanism and significance of ocular fundus changes in AD patients will be helpful to select specific, sensitive and simple methods for early observation and evaluation of AD.
With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.
ObjectiveTo investigate the quality of life of family caregivers of patients with Alzheimer's disease (AD) and to explore the related factors. MethodsTwenty family caregivers of patients with Alzheimer's disease were surveyed with short form 36 health survey questionnaire between October 2013 and August 2014. ResultsThe subjects who were over 60 years old had lower scores in the dimensions of physical functioning, role limitations due to physical problem and role limitations due to emotional problem than those below 60 years old. Female subjects scored better than male subjects in the dimension of vitality. The sons and daughters had higher scores than the wives and husbands in the dimensions of physical functioning, role limitations due to physical problem and role limitations due to emotional problem. The subjects whose patients had medical insurance scored better than those whose patients with no insurance. The differences above were all statistically significant. The scores of caregivers with senior middle school edudation or above were higher than the caregivers with lower education level in the dimensions of mental health, vitality and general health perceptions. ConclusionThe quality of life of the family members of AD patients is obviously affected by many factors. It is very important to implement planned, targeted, reasonable and effective interventions to enhance the quality of life of these people.