The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
ObjectiveTo observe the efficacy and safety of combined photodynamic therapy (PDT) with intravitreal ranibizumab injection in patients with polypoidal choroidal vasculopathy (PCV). MethodsTwenty-four PCV patients (24 eyes) were enrolled in this retrospective case study.All patients were assessed by the examinations of Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity chart, color fundus photography, fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA) and optic coherence tomography (OCT). The mean visual acuity was (33.41±19.43) letters; the mean macular retinal thickness was (343.63±88.60) μm. Patients received PDT first, and intravitreal injected ranibizumab 0.5 mg (0.05 ml) 72 hours later. Treatments were repeated as a single intravitreal injection of ranibizumab combined with or without PDT if the monthly follow-up indicated that it was necessary. The average follow-up period was 13.1 months. The average treatment times were analyzed for each eye. Systemic and ocular adverse events were observed. Visual acuity, macular retinal thickness and leakage of PCV before and after the treatment were analyzed. ResultsIntravitreal ranibizumab injections was repeated (2.8±1.6) times per eye on average, and intravitreal injection of ranibizumab combined with PDT was repeated (0.4±0.5) times per eye on average. No systemic and ocular adverse effects were found during and after combined therapy. In the last follow-up, the mean visual acuity of ETDRS was (44.21±17.24) letters, improved by 10.8 letters (t=-4.77, P<0.01).Visual acuity was improved in 11 eyes (45.8%) and stable in 13 eyes (54.2%). FFA and ICGA showed complete closed PCV in 17 eyes (70.8%), partial closed PCV in 7 eyes (29.2%). OCT image showed that the retinal edema was disappeared in 19 eyes (79.2%) and alleviated in 5 eyes (20.8%). The mean macular retinal thickness was (171.33±38.06) μm, which was 172.30 μm less than that of pre-treatment values (t=11.96, P<0.05). ConclusionPhotodynamic therapy combined with intravitreal ranibizumab injections for PCV is safe and effective, with visual acuity improvement, reduction of retinal edema and PCV leakage.
ObjectiveTo assess the efficacy and safety of intravitreal aflibercept injection (IAI) compared with photodynamic therapy (PDT) in the treatment of Chinese patients with predominantly classic subfoveal choroidal neovascularization (CNV) lesions secondary to neovascular age-related macular degeneration (nAMD).MethodsA randomized, double-blind, multi-center phase-3 clinical trial lasting for 52 weeks (from December 2011 to August 2014). Subjects were randomized in a 3:1 ratio to either IAI group or PDT-to-IAI group. Subjects in the IAI group received 2 mg IAI at baseline and at week 4, 8, 16, 24, 32, 40, 48, with sham injection at week 28, 36. Subjects in the PDT-to-IAI group were forced to receive PDT once at baseline and more time at week 12, 24 if PDT retreatment conditions were met. Sham injections were given in PDT-to-IAI group at baseline and at week 4, 8, 16 and 24, followed by 2 mg IAI at week 28, 32, 36, 40, 48. The primary outcome of efficacy were the change in mean Best Corrected Visual Acuity (BCVA) from baseline to week 28, and that of week 52. Safety evaluation included the percentage of subjects who suffered treatment emergent adverse events (TEAEs).ResultsAmong the 304 subjects enrolled, there were 228 and 76 cases in IAI group and PDT-to-IAI group respectively. At week 28, the changes of mean BCVA in IAI group, PDT-to-IAI group compared to baseline were +14.0, +3.9 letters, respectively. At week 52, the changes of mean BCVA in two groups were +15.2, +8.9 letters respectively with the difference of +6.2 letters (95%CI 2.6−9.9, P=0.000 9). At week 52, the mean foveal retinal thickness in the two groups decreased by −189.6, −170.0 μm, respectively. Subjects with the most BCVA increase in IAI group were those aged <65, and those with active CNV lesion area <50% of total lesion area. The most common TEAEs in IAI group and PDT-to-IAI group are macular fibrosis [11.8% (27/228), 6.6% (5/76)] and BCVA decline [6.6% (15/228), 21.1% (16/76)]. There were 3 cases of arterial thromboembolic events defined in the antiplatelet experimental collaboration group, but all were considered unrelated to interventions.ConclusionsThe efficacy of aflibercept is superior to that of PDT in nAMD patients in China. The therapeutic effect of aflibercept persisted to week 52 in all subjects. The rate of adverse events was consistent with the safety data of aflibercept known before.
ObjectiveTo evaluate the macular visual function of patients with myopic choroidal neovascularization (MCNV) before and after intravitreal injection of conbercept.MethodsA prospective, uncontrolled and non-randomized study. From April 2017 to April 2018, 21 eyes of 21 patients diagnosed as MCNV in Shanxi Eye Hospital and treated with intravitreal injection of conbercept were included in this study. There were 9 males (9 eyes, 42.86%) and 12 females (12 eyes, 57.14%), with the mean age of 35.1±13.2 years. The mean diopter was −11.30±2.35 D and the mean axial length was 28.93±5.68 mm. All patients were treated with intravitreal injection of conbercept 0.05 ml (1+PRN). Regular follow-up was performed before and after treatment, and BCVA and MAIA micro-field examination were performed at each follow-up. BCVA, macular integrity index (MI), mean sensitivity (MS) and fixation status changes before and after treatment were comparatively analyzed. The fixation status was divided into three types: stable fixation, relatively unstable fixation, and unstable fixation. The paired-sample t-test was used to compare BCVA, MI and MS before and after treatment. The x2 test was used to compare the fixation status before and after treatment.ResultsDuring the observation period, the average number of injections was 3.5. The logMAR BCVA of the eyes before treatment and at 1, 3, and 6 months after treatment were 0.87±0.32, 0.68±0.23, 0.52±0.17, and 0.61±0.57, respectively; MI were 89.38±21.34, 88.87±17.91, 70.59±30.02, and 86.76±15.09, respectively; MS were 15.32±7.19, 21.35±8.89, 23.98±11.12, 22.32±9.04 dB, respectively. Compared with before treatment, BCVA (t=15.32, 18.65, 17.38; P<0.01) and MS (t=4.08, 3.50, 4.26; P<0.01) were significantly increased in the eyes 1, 3, and 6 months after treatment. There was no significant difference in the MI of the eyes before treatment and at 1, 3, and 6 months after treatment (t=0.60, 2.42, 2.58; P>0.05). Before treatment and at 1, 3, and 6 months after treatment, the proportion of stable fixation were 28.57%, 38.10%, 38.10%, 33.33%;the proportion of relatively unstable fixation were 47.62%, 47.62%, 52.38%, 57.14% and the proportion of unstable fixation were 23.81%, 14.28%, 9.52%, 9.52%, respectively. The proportion of stable fixation and relatively unstable fixation at 1, 3 and 6 months after treatment were higher than that before treatment, but the difference was not statistically significant (x2=1.82, 1.24, 1.69; P>0.05).ConclusionBCVA and MS are significantly increased in patients with MCNV after intravitreal injection of conbercept.
ObjectiveTo observe the effect of preoperative intravitreal ranibizumab injection (IVR) on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective study was carried out with the 90 PDR patients (90 eyes) who underwent vitrectomy. The 90 patients(90 eyes)were assigned to the vitrectomy only group(43 eyes) and the IVR combined with vitrectomy group (47 eyes). The IVR was performed 5-13 days prior to vitrectomy in the IVR combined with vitrectomy group. There were 15 eyes with fibrous proliferation PDR (FPDR), 16 eyes with advanced PDR (APDR) without involving the macular and 16 eyes with APDR involving the macular in the vitrectomy only group. There were 14 eyes with FPDR, 15 eyes with APDR without involving the macular and 14 eyes with APDR involving the macular patients in the IVR combined with vitrectomy group. All the eyes in the two groups were regularly operated by the same doctor to complete the vitrectomy. The start and end time of vitrectomy were recorded. The average follow-up time was 10 months. The changes of best corrected visual acuity (BCVA) before and 1, 3 and 6 months after surgery were compared between the two groups. ResultsThe duration of operation of the FPDR type (t=-8.300) and the APDR involving the macular type (t=-2.418) in the IVR combined with vitrectomy group was shorter than vitrectomy only group (P < 0.05). The comparison of duration of operation of the APDR without involving the macular type in the two groups has no statistically significant difference (t=-1.685, P > 0.05). At 1 month after surgery, the comparison of BCVA of the IVR combined vitrectomy group and the vitrectomy only group in APDR involving the macular type has no statistically significant difference (t=0.126, P > 0.05). At 3, 6 months after surgery, the BCVA of the IVR combined vitrectomy group in APDR involving the macular type was significantly better than the BCVA of the vitrectomy only group (t=8.014, 7.808; P < 0.05). At 1, 3, and 6 months after surgery, the BCVA of the IVR combined vitrectomy group in FPDR type (t=3.809, 1.831, 0.600) and APDR without involving the macular type (t=0.003, 1.092, 3.931) compared with pre-treatment, the difference were not statistically significant (P > 0.05); the BCVA in APDR without involving the macular type compared with pre-treatment, the difference was distinctly statistically significant (t=2.940, 4.162, 6.446; P < 0.05); the BCVA in APDR involving the macular type (t=0.953, 1.682, 1.835) compared with pre-treatment, the difference were not statistically significant (P > 0.05). ConclusionPreoperative IVR of PDR can shorten the operation duration and improve the BCVA of APDR involving the macular type.
Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
Diabetic macular ischemia (DMI) is one of the manifestation of diabetic retinopathy (DR). It could be associated with diabetic macular edema (DME), which may affect the vision of DR patients. FFA is the gold standard for the diagnosis of DMI, but with the advent of OCT angiography, a more convenient and diversified method for the evaluation of DMI has been developed, which makes more and more researchers start to study DMI. Intravitreal injection of anti-VEGF has become the preferred treatment for DME. When treating with DME patients, ophthalmologists usually avoid DMI patients. But if intravitreal anti-VEGF should be the contradiction of DME is still unclear. To provide references to the research, this article summarized the risk factors, assessment methods and influence of DMI. This article also analyzed the existing studies, aiming to offer evidences to a more reasonable and effective treatment decision for DME individual.
Objective To observe the efficacy of intravitreal injection of ranibizumab (IVR) for different patterns of optical coherence tomography (OCT) of diabetic macular edema and the relationship between integrity of ellipsoidal zone and visual acuity outcomes. Methods Eighty-five IVR treated eyes were enrolled. The examination of BCVA was according to Early Treatment Diabetic Retinopathy Study, and the results were recorded as logarithm of the minimum angle of resolution (logMAR). Frequency-domain OCT was used to measure the central foveal thickness (CFT) and the integrity of ellipsoidal zone. All eyes were classified as diffuse macular edema (DRT group, 31 eyes), cystoid macular edema (CME group, 29 eyes), and serous retinal detachment (SRD group, 25 eyes). All the patients were treated with intravitreal injection of 0.05 ml (0.5 mg) ranibizumab. The mean follow-up time was (9.21+3.56) months after IVR treatment. The changes of BCVA and CFT in 3 groups were compared and analyzed after 3, 6 and 12 months. According to visual acuity at different ranges, the relationship between integrity of ellipsoidal zone and BCVA was analyzed. Results Compared with the average logMAR BCVA before treatment, except for 12 months after treatment in group SRD (t=2.104,P=0.053), the average logMAR BCVA after IVR at 3 months, 6 months and 12 months improved in DRT group (t=7.847, 6.771, 6.426;P=0.000, 0.000, 0.000), CME group (t=8.560, 6.680, 5.082;P=0.000, 0.000, 0.000) and SRD group (t=5.161, 3.968, 2.104;P=0.000, 0.001, 0.053). The average logMAR BCVA of the DRT group was lesser than that in CME and SRD group after 12 months treatment (t=–2.043, –3.434;P=0.030, 0.001). The average CFT after IVR at 3 months, 6 months and 12 months reduced significantly in DRT group (t=12.746, 10.687, 9.425;P=0.000, 0.000, 0.000), CME group (t=13.400, 11.460, 10.169;P=0.000, 0.000, 0.000), and SRD group (t=11.755, 10.100, 9.173;P=0.000, 0.000, 0.000). After 12 months of treatment, the average CFT of the SRD group was thicker than that in DRT group and CME group (t=–3.251, –1.227;P=0.003, 0.025); there was significant difference in the integrity of ellipsoidal zone among 3 groups (χ2=1.267,P=0.531). The results showed that there were significant differences in the integrity of ellipsoidal zone with different ranges of BCVA before and after 12 months treatment (χ2=20.145, 41.035;P=0.000, 0.000). Conclusions IVR could significantly improve the visual acuity of different patterns of DME, reduced the CFT, and had the best efficacy in the DRT group. There was relationship between the integrity of ellipsoidal zone and the visual acuity outcomes.
Objective To observe the therapeutic effect of ultrasonic microbubble combined with bevacizumab (Avastin) on choroidal neovascularization induced by photocoagulation in rabbits.Methods CNV was induced by photocoagulation with argon laser in 30 rabbits (60 eyes).All of the rabbits underwent fundus fluorecein angiography (FFA) 21 days after photocoagulation; 6-8 hours later, 3 rabbits were randomly chosen to be executed to having the immunohistochemical examination.Twenty one days after photocoagulation, 27 rabbits were divided randomly into 3 groups: bevacizumb, ultrasonic microbubble + bevacizumb,and control group; each group has 9 rabbits (18 eyes).The rabbits in control group had no interference treatment; while the rats in bevacizumb and ultrasonic microbubble + bevacizumb group underwent injection with bevacizumb or ultrasonic microbubble + bevacizumb respectively.FFA was performed on all of the rabbits 7,14,and 28 days after photocoagulation to observe the inhibition of CNV; immunofluorecence and Western blot were used to detect the expression of VEGF in retina and choroid.Twentyeight days is the time point to determine the therapeutic efficacy. The expression of VEGF and the results of FFA were the sdandards of the judgement of therapeutic efficacy.Results Proliferaion of CNV to the retinal inner layer and the obvious leakage of fluoresein in the photocoagulation area indicated that the model of CNV was set up successfully. Twenty eight days after injection,obvious fluorescent leakage was found in the control group, and the average fluorescent leakage in bevacizumab group differed much from the control group(t=16.2952,Plt;0.05); while the difference between ultrasonic microbubble + bevacizumb group and bevacizumab group was also significant (t=4.7955,Plt;0.05) . At the same time point, the expression of VEGF in bevacizumab group detected by immunofluorecent assay and Western blot differed much from the control group (t=7.0327,9.2596;Plt;0.05),and the difference of VEGF between ultrasonic microbubble + bevacizumb group and bevacizumab group was significant(t=2.9724,17.1937;Plt;0.05). this experiment show that ultrasound combined bevacizumab intravitreal injection of the therapeutic effect of CNV superior to other groups(Plt;0.01).Conclusion Ultrasound microbubble combined with bevacizumab injection may improve the therapeutic effect on CNV by inhibiting the expression of VEGF.