Objective To evaluate the effect of vascular endothelial cell growth factor (VEGF) antisense oligodeoxynucleotides (ASODNs) on the expression of VEGF in rats with oxygen-induced retinopathy. Methods Thirty newborn Sprague-Dawley (SD) rats were randomly divided into 3 groups:normal control group, disposal group and non-disposed group, The animal models with oxygen-induced proliferative retinopathy were established by raising the rats in hyperoxic environment. Retrobulbar injection was performed with VEGF ASODNs or normal saline on the rats in 3 groups respectively. The intraocular tissues (all the tissues except the cornea, sclera, and lens) and serum were collected, and the expressions of VEGF were determined by using competitive enzyme immunoassay.Results The expressions of VEGF in intraocular tissues of rats in disposal group were significantly lower than those in non-disposed group (P<0.05), and there was no statistical difference between the disposal and normal control group (P>0.05). There was no significant difference of the expressions of VEGF in serum of rats between the disposal and non-disposed group (P>0.05), which were both lower than those in the normal control group (P<0.05). Conclusion VEGF ASODNs could significantly inhibit the expression of VEGF in intraocular tissues. (Chin J Ocul Fundus Dis,2003,19:172-174)
Objective To observe the inhibitory effects of local co-transfection of tissuetype plasminogen activator(tPA) gene and proliferating cell nuclear antigen antisense oligodeoxynucleotides(PCNA-ASODN) on the intima proliferation and restenosis of autograft artery in rabbits. Methods One hundred and twenty male Zelanian rabbits were randomly divided into four groups(n=30, in each group): control group, PCNA-ASODN group, tPA group and tPA+PCNAASODN group. The left and right external iliac arteries (length 1.0 cm) were transplanted reciprocally. The transplanted arteries were respectively soaked in lipofection, PCNAASODN, pBudCE4.1/tPA and pBudCE4.1/tPA+PCNA-ASODN solution about 15 minutes. The transplanted arteries were sutured with 9-0 sutures soaked in PCNA-ASODN and pBudCE4.1/tPA solution. Each group were divided into five subgroups(n=6, in each subgroup) according to the sacrifice time (3 d, 7 d, 14 d, 28 d and 56 d after operation). On every sacrifice time point, the vascular specimens were harvested. The thrombocyte assembling and thrombus forming lining vessel wall were observed by scanning electron microscope. The pathological morphology of transplanted arteries were observed under microscope(HE). The intimal areas and stenosis ratio(%) of transplanted arteries were calculate and analyzed statistically among groups by computer system. The mRNA expression of tPA gene in transplanted ressel wall was detected with vevere transcriptionPCR(RT-PCR). The number of PCNA positive cells in transplanted vessel wall was counted by SP immunochemisty.Results The mRNA expression of tPA gene in the transplanted vessel wall in tPA and tPA+PCNA-ASODN groups was higher than that of the other two groups(P<0.01).The number of PCNA positive cells in the transplanted arteries in PCNAASODN, tPA and tPA+PCNAASODN groups were significantly lower than that of control group(P<0.05,P<0.01). The intimal areas and degrees of luminal stenosis of PCNAASODN, tPA and tPA+PCNAASODN groups were lower than those of control group(P<0.05,P<0.01), and those of tPA+ PCNA-ASODN group were lower than those of PCNA-ASODN and tPA groups(P<0.05). Scanning electron microscopy showed that there were a few thrombocytes lining the vessel wall of tPA group and tPA+PCNAASODN group and no thrombus, whereas there were abundant thrombocytes and thrombi lining the vessel wall of the control group. Conclusion Co-transfection of tPA gene and PCNA-ASODN can effectively inhibit the proliferation of VSMC, hyperplasia of intima and restenosis of transplanted artery.
Objective To investigate the reversal effect of antisense phosphorothioate oligonucleotide (ASOND) on human hepatoma resistant cells. Methods Human hepatoma resistant cells SMMC-7721 was transfected with synthetic antisense phosphorothioate oligonucleotide complementary to the 5′ region flanking the AUG initiation codon mediated by lipofectamine. In vitro drug sensitivity was measured by MTT assay. The expression of P-170 was determined by flow cytometry and mRNA was assessed by RT-PCR. Results ASOND inhibited the expression of mRNA and p-170 in SMMC-7721, enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug. The best inhibitory effect was achived by the dose of 0.5μmol/L. Conclusion ASOND enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug and reversed the multidrug resistance of SMMC-7721 partially.
【Abstract】ObjectiveTo study the effect of down-regulation of E-cadherin on the invasion ability of tumor cells. MethodsHuman pancreatic carcinoma cell line JHP-1 was treated with E-cadherin antisense oligodeoxynucleotied (ASODN). The immunocytochemistry, Western blot were used to detect the expression and the contents of E-cadherin in the tumor cells, and the invasive ability of tumor cells were evaluated by invasive-MTT assay. Results Treated with E-cadherin ASODN, the expression of E-cadherin on JHP-1 cells were reduced, and the protein contents were decreased as well compared with control groups and ODN group. The invasive ability of JHP-1 cells to the basement membrane was increased (P<0.001) compared with ODN group and control group. ConclusionE-cadherin was related to the invasive ability of tumor cells.
ObjectiveTo construct the recombinant adenovirus vector carrying antisense multidrug resistanceassociated protein (MRP) and transfect the human drugresistant hepatocellular carcinoma cell line(SMMC7721/ADM). MethodsThe fragment of MRP gene encoding 5′region was cloned reversely into the shuttle plasmid pAdTrackCMV, with the resultant plasmid and the backbone plasmid pAdEasy1,the homologous recombination took place in the bacteria and the recombinant adenoviral plasmid was generated. The adenoviruses were packaged and amplified in 293 cells. Then the cell line of SMMC7721/ADM was transfected with the resultant adenoviruses.ResultsThe recombinant adenovirus vector carrying antisense MRP was constructed successfully. The viral titer was 2.5×109 efu/ml, and more than 90% SMMC7721/ADM cells could be transfected when the multiplicity of infection(MOI) was 100. ConclusionThe recombinant adenovirus vector constructed by us could introduce the antisense MRP into the human drugresistant hepatocellular cell line effectively, which would provide experimental basis for the mechanisms and reversal methods of the multidrug resistance in human hepatocellular carcinoma.
Objective To investigate the effect on expression of c-myc and proliferating cell nuclear antigen (PCNA) of vein grafts transferred by c-myc antisense oligodeoxynucleotides(ODN) of soluble stent. Methods A rabbit model of common carotid arteries grafted by external jugular veins was constructed in 50 New Zealand rabbits and were randomly divided into five groups, 10 rabbits each group. Control group: no stents ; group 1: soluble stent ; group 2: soluble stent with sense-ODN; group 3: soluble stent with antisense-ODN; group 4.. soluble stent with mismatch-ODN. At 7 d, 28 d and 90 d after surgery, vein grafts were harvested. The expression of c-myc and PCNA were identified by immunochemistry methods. Results At 7d, 28d, 90d after surgery, the expression of c-myc and PCNA of the intima and media of vein grafts in control group, group 1, group 2, group 4 were higher significantly than that in group 3 (P〈0. 01). At 28d, 90d after surgery, the expression of c-myc in five groups were higher than that in the same group at 7d after surgery (P〈0. 01). Conclusion Soluble stent can transfer ODN effectively. C- myc antisense-ODN transferred by soluble stent can inhibit significantly the expression of c-myc and PCNA in the intima and media of vein grafts.
Objective To study the effects of survivin antisense RNA on SGC7901 cell’s apoptosis and chemosensitivity to taxotere, and to investigate its effect on the expression of multi-drug resistance gene-1 (MDR-1). Methods Survivin antisense eukaryotic vector anti-pcDNA3-svv was transfected into SGC7901 cell lines by lipofectamine and positive clones were screened out then. Survivin protein and MDR-1 mRNA were measured by western blot and RT-PCR, respectively. Apoptosis that was induced by anti-pcDNA3-svv was observed by electronic microscope, and the sensitivity of SGC7901 cell to taxotere was examined by MTT. Results The expressions of survivin protein and MDR-1 mRNA in transfected SGC7901 cells both decreased more significantly than that of non-transfected cells (P<0.05, P<0.01), and the indices of MDR of transfection group and non-transfection group were 0.196±0.013 and 3.126±0.019, respectively, at the late phase of apoptosis, which had a significant difference between each other (P<0.01), IC50 of the transfected cells to taxotere was (16.7±1.98) ng/ml and that of the non-transfected cells was (55.7±1.89) ng/ml, which also had a significant difference (P<0.01). Conclusion Surivivin antisense RNA could induce the apoptosis of SGC7901 cancer cell line and could increase the cells’ sensitivity to taxotere, which may help to reverse drug resistance.
【Abstract】ObjectiveTo study the apoptosis of gallbladder carcinoma cell line GBCSD induced by antisense oligodeoxynucleotide (ASODN) targeting survivin. MethodsASODN targeting survivin was transfected into GBCSD cells mediated by lipofectin. Cultured cells were divided into 3 groups: control group,sense oligonucleotide (SODN) group and ASODN group. After transfected for 16 h, the cultured cells were harvested and the following texts were carried out. The expression of survivin mRNA was detected by RTPCR. Flow cytometer were used to detect apoptosis. Morphological changes were observed by electron microscopy. ResultsThe expression of survivin mRNA was decreased 47.83% in ASODN group while apoptosis was increased from (0.50±0.23)% to (26.28±3.91)%. Abnormal morphological changes of cells were observed in ASODN group and apoptosis bodies were found in some gallbladder carcinoma cells. ConclusionThe expression of survivin may be decreased in GBCSD cells after ASODN transfection.ASODN targeting survivin could induce gallbladder carcinoma cells apoptosis effectively.
Objective To study the effects on MCF-7 breast cancer cells with combination of tamoxifen(TAM) and antisense oligonucleotide (ASODN) targeting survivin mRNA. Methods MCF-7 breast cancer cells were treated with a 20 mer ASODN targeting survivin mRNA and TAM, which were divided into three groups: TAM group (treated by TAM only), ASODN group (by ASODN only), and TAM+ASODN combined group (by TAM+ASODN combination). The growth inhibition of MCF-7 cells, the changes of cell cycles and apoptotic rate, the positive rate of survivin mRNA expression, and the activity of caspase-3 were tested by MTT, flow cytometry, hybridization in situ, and spectrophotometric method, respectively.Results The rate of growth inhibition of MCF-7 cells in the TAM+ASODN combined group was (62.26±3.92)%, which was significantly higher than that in the TAM group 〔(42.30±6.63)%〕 or ASODN group 〔(54.77±9.99)%〕, Plt;0.05. The apoptotic rate of MCF-7 cells was (28.08±4.32)% in the TAM+ASODN combined group, which was significantly higher than that in the TAM group 〔(18.94±4.01)%〕 or ASODN group 〔(21.12±3.95)%〕, Plt;0.01. The effect of arresting MCF-7 cells in G0/G1 phase in the TAM+ASODN combined group was ber than that in the TAM or ASODN group (Plt;0.05, Plt;0.01). The positive rate of survivin mRNA in the TAM+ASODN combined group was (13.38±3.45)%, which was significantly lower than that in the TAM group 〔(39.67±7.42)%〕 or ASODN group 〔(27.50±5.80)%〕, Plt;0.01. The activity of caspase-3 in the TAM+ASODN combined group (0.93±0.13) was significantly higher than that in the TAM group (0.50±0.09) or ASODN group (0.64±0.08), Plt;0.01. Conclusion The ASODN targeting survivin mRNA can promote the apoptosis of MCF-7 breast cancer cells, and make MCF-7 cells more sensitive to tamoxifen.
Objective Col I A1 antisense oligodeoxyneucleotide (ASODN) has inhibitory effect on collagen synthesis in cultured human hypertrophic scar fibroblasts. To investigate the effects of intralesional injection of Col I A1 ASODN on collagen synthesis in human hypertrophic scar transplanted nude mouse model. Methods The animal model of humanhypertrophic scar transplantation was established in the 60 BALB/c-nunu nude mice (specific pathogen free grade, weighing about 20 g, and aged 6-8 weeks) by transplanting hypertrophic scar without epidermis donated by the patients into the interscapular subcutaneous region on the back, with 1 piece each mouse. Fifty-eight succeed models mice were randomly divided into 3 groups in accordance with the contents of injection. In group A (n=20): 5 μL Col I A1 ASODN (3 mmol/L), 3 μL l iposome, and 92 μL Opti-MEM I; in group B (n=20): 3 μL l iposome and 97 μL Opti-MEM I; in group C (n=18): only 100 μL Opti-MEM I. The injection was every day in the first 2 weeks and once every other day thereafter. The scar specimens were harvested at 2, 4, and 6 weeks after injection, respectively and the hardness of the scar tissue was measured. The collagens type I and III in the scar were observed under polarized l ight microscope after sirius red staining. The ultrastructures of the scar tissues were also observed under transmission electronic microscope (TEM). Additionally, the Col I A1 mRNAs expression was determined by RT-PCR and the concentrations of Col I A1 protein were measured with ELISA method. Results Seventeen mice died after intralesional injection. Totally 40 specimens out of 41 mice were suitable for nucleic acid and protein study, including 14 in group A, 13 in group B, and 14 in group C. The hardness of scars showed no significant difference (P gt; 0.05) among 3 groups at 2 weeks after injection, whereas the hardness of scars in group A was significantly lower than those in groups B and C at 4 and 6 weeks (P lt; 0.05), and there was no significant difference between groups B and C (P gt; 0.05). The collagen staining showed the increase of collagentype III in all groups, especially in group A with a regular arrangement of collagen type I fibers. TEM observation indicated that there was degeneration of fibroblasts and better organization of collagen fibers in group A, and the structures of collagen fibers in all groups became orderly with time. The relative expressions of Col I A1 mRNA and the concentrations of Col I A1 protein at 2 and 4 weeks after injection were significant difference among 3 groups (P lt; 0.05), and they were significantly lower in group A than in groups B and C (P lt; 0.05) at 6 weeks after injection, but no significant difference was found between groups B and C (P gt; 0.05). Conclusion Intralesional injection of Col I A1 ASODN in the nude mice model with human hypertrophic scars can inhibit the expression of Col I A1 mRNA and collagen type I, which enhances the mature and softening of the scar tissue. In this process, l iposome shows some assistant effect.