west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bayesian" 25 results
  • Individualized risk assessment model based on Bayesian networks and implementation by R software

    This study introduced the construction of individualized risk assessment model based on Bayesian networks, comparing with traditional regression-based logistic models using practical examples. It evaluates the model's performance and demonstrates its implementation in the R software, serving as a valuable reference for researchers seeking to understand and utilize Bayesian network models.

    Release date: Export PDF Favorites Scan
  • Brief introduction of Bayesian N-of-1 trials

    Bayesian N-of-1 trials is increasingly popular in recent years. This study introduced the principle, statistical requirements, application status, advantages and disadvantages of Bayesian N-of-1 trials. Although the application of Bayesian N-of-1 trials is still limited in small scale and some problems remain to be solved, but it can provide more posterior information, and it can be the most important type of N-of 1 trial in future.

    Release date:2017-07-19 10:10 Export PDF Favorites Scan
  • Implementation of Network Meta-Analysis Using Stata Software

    The WinBUGS software can be called from either R (provided R2WinBUGS as an R package) or Stata software for network meta-analysis. Unlike R, Stata software needs to create relevant ADO scripts at first which simplify operation process greatly. Similar with R, Stata software also needs to load another package when drawing network plots. This article briefly introduces how to implement network meta-analysis using Stata software by calling WinBUGS software.

    Release date: Export PDF Favorites Scan
  • Automatic recognition and analysis of hemiplegia gait

    In this paper, the research has been conducted by the Microsoft kinect for windows v2 for obtaining the walking trajectory data from hemiplegic patients, based on which we achieved automatic identification of the hemiplegic gait and sorted the significance of identified features. First of all, the experimental group and two control groups were set up in the study. The three groups of subjects respectively completed the prescribed standard movements according to the requirements. The walking track data of the subjects were obtained straightaway by Kinect, from which the gait identification features were extracted: the moving range of pace, stride and center of mass (up and down/left and right). Then, the bayesian classification algorithm was utilized to classify the sample set of these features so as to automatically recognize the hemiplegia gait. Finally, the random forest algorithm was used to identify the significance of each feature, providing references for the diagnose of disease by ranking the importance of each feature. This thesis states that the accuracy of classification approach based on bayesian algorithm reaches 96%; the sequence of significance based on the random forest algorithm is step speed, stride, left-right moving distance of the center of mass, and up-down moving distance of the center of mass. The combination of step speed and stride, and the combination of step speed and center of mass moving distance are important reference for analyzing and diagnosing of the hemiplegia gait. The results may provide creative mind and new references for the intelligent diagnosis of hemiplegia gait.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Using Bayesian network as a basis to analyze the substitution mechanism of surrogate endpoints for traditional Chinese medicine clinical efficacy evaluation of chronic heart failure

    Objective To analyze the substitution mechanism of surrogate endpoints for traditional Chinese medicine (TCM) clinical efficacy evaluation of chronic heart failure (CHF). Methods To obtain data from the occurrence of surrogate endpoints and cardiogenic death of patients with CHF in 7 hospitals. The causal relationship between surrogate endpoints and cardiogenic mortality was inferred by the Bayesian network model, and the interaction among surrogate endpoints was analyzed by non-conditional logistic regression model. Results A total of 2 961 patients with CHF were included. The results of Bayesian network causal inference showed that cardiogenic mortality had a causal relationship with the surrogate endpoints including NYHA classification (P=0.46), amino-terminal pro-B-type natriuretic peptide (NT-proBNP) (P=0.24), left ventricular ejaculation fraction (LVEF) (P=0.19), and hemoglobin (HB) (P=0.11); non-conditional logistic regression analysis showed that NYHA classification had interaction with NT-proBNP, LVEF, and HB prior to and after adjusting confounders. Conclusions The substitution capability of surrogate endpoints for TCM clinical efficacy evaluation of CHF for cardiogenic mortality are NYHA classification, NT-proBNP, LVEF, and HB in turn, and there is a multiplicative interaction between the main surrogate endpoint NYHA classification and the secondary surrogate endpoints including NT-proBNP, LVEF, and HB, suggesting that when the two surrogate endpoints with interaction exist at the same time, it can enhance the substitution capability of surrogate endpoints for cardiogenic mortality.

    Release date:2022-01-27 05:31 Export PDF Favorites Scan
  • Performing Bayesian meta-analysis and meta-regression using bmeta package in R software

    The R software bmeta package is a package that implements Bayesian meta-analysis and meta-regression by invoking JAGS software. The program is based on the Markov Chain Monte Carlo (MCMC) algorithm to combine various effect quantities (OR, MD and IRR) of different types of data (dichotomies, continuities and counts). The package has the advantages of fewer command function parameters, rich models, powerful drawing function, easy of understanding and mastering. In this paper, an example is presented to demonstrate the complete operation flow of bmeta package to implement bayesian meta-analysis and meta-regression.

    Release date:2021-01-26 04:48 Export PDF Favorites Scan
  • Application of netmeta Package in R Language to Implement Network Meta-Analysis

    The netmeta package is specialized for implementing network meta-analysis. This package was developed based on the theories of classical frequentist under R language framework. The netmeta package overcomes some difficulties of the software and/or packages based on the theories of Bayesian, for these software and/or packages need to set prior value when conducting network meta-analysis. The netmeta package also has the advantages of simple operation process and ease to operate. Moreover, this package can calculate and present the individual matched and pooled results based on the random and fixed effect model at the same time. It also can draw forest plots. This article gives a briefly introduction to show the process to conduct network meta-analysis using netmeta package.

    Release date: Export PDF Favorites Scan
  • An introduction of common dynamic predictive modeling methods in medical research

    The risk prediction model (RPM) can be used to predict the risks of disease for individuals, playing an extremely important role in decision-making regarding disease prevention, treatment, and prognostic management. Most of the existing RPMs only utilize a single-time cross-section of variable data, so-called static models, which fail to consider the many changes during disease progression and lead to limited prediction accuracy. Dynamic prediction models can incorporate longitudinal data such as repeated measurements of variables during follow-up to capture the longitudinal changes in individual characteristics over time, describe the dynamic trajectory of individual disease risk and improve the prediction accuracy of the models; however, their application in medical research is still relatively small. In this paper, we conducted a systematic literature search to summarize the commonly used dynamic models: joint model, landmark model, and Bayesian dynamic model. By introducing their application scenarios, advantages and disadvantages, and software implementations and conducting comparisons, we aimed to provide methodological references for the future application of dynamic prediction models in medical research.

    Release date:2022-11-14 09:36 Export PDF Favorites Scan
  • Implementing Bayesian meta-analysis of binary data using PROC MCMC process step in the SAS software

    ObjectiveTo introduce Bayesian meta-analysis of dichotomous data using PROC MCMC in SAS software.MethodsA previous published systematic review was used as an example, Bayesian meta-analysis of dichotomous data was implemented by PROC MCMC in SAS software, and programming code was provided.ResultsThe log-transformed value of odds ratio (OR) was used as the efficacy. The results of the Bayesian meta-analysis were very similar to those obtained by the frequency method.ConclusionsBased on the powerful programming capabilities of SAS, PROC MCMC can easily implement Bayesian meta-analysis of dichotomous data. With the rapid development of Bayesian statistical theory, Bayesian meta-analysis will play an important role in the field of meta-analysis.

    Release date:2021-03-19 07:04 Export PDF Favorites Scan
  • Application of bnma package of R software in Bayesian network meta-analysis

    The "bnma" package is a Bayesian network meta-analysis software package developed based on the R programming language. The network meta-analysis was performed utilizing JAGS software, which yielded relevant results and visual graphs. Moreover, this software package provides support for various data structures and types, while also providing the advantages of flexible utilization, user-friendly operation, and deliver of rich and accurate outcomes. In this paper, using a network meta-analysis example of different therapies for androgenetic alopecia, the operational process of conducting network meta-analysis using the "bnma" package is briefly introduced.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content