Objective To review research progress of corneal tissueengineering.Methods The recent articles on corneal tissue engineering focus on source and selection of corneal cells, the effects of growth factors on culture of corneal cells in vitro. The preparation and selection of three-dimensional biomaterial scaffolds and their b and weak points were discussed. Results The corneal tissue engineering cells come from normal human corneal cells. The embryo corneal cell was excellent. Several kinds of growth factors play important roles in culture, growth and proliferation of corneal cell, and incroporated into matrix.Growth factors including basic fibroblast growth factor, keratinocyte growth factor, transforming growth factor β1 and epidermal growth factor was favor to corneal cell. Collagen, chitosan and glycosaninoglycans were chosen as biomaterial scaffolds. Conclusion Human tissue engineering cornea can be reconstructed and transplanted. It has good tissue compatibility and can be used as human corneal equivalents.
In search of a rapid method for vascular anastomosis with high quality,a compatative study was carried out to observe the results of laser welding of the saphenous artery of rabbit(0.45-0.85 indiameter)with the use of a degradable intraluninal bionterial support and the traditional method of suture anastomosis. The results showed that there was no significant difference observed between the two groups in the immediate and long patency rated and the occurrence of stenosis,However,the time ...
ObjectiveTo review the research progress of medicine biomaterials in prevention and treatment of adhesion after tendon injury, and to provide reference for clinical treatment.MethodsThe literature on the application of medical biomaterials in the prevention and treatment of tendon adhesions in recent years was reviewed, and the biological process, treatment methods, and current status of tendon adhesions were summarized.ResultsTendon adhesion as part of the healing process of the tendon is the biological response of the tendon to the injury and is also a common complication of joint dysfunction. Application of medical biomaterials can achieve better biological function of postoperative tendon by reducing the adhesion of peritendon tissues as far as possible without adversely affecting the tendon healing process.ConclusionThe use of medical biomaterials is conducive to reduce the adhesion of tendon after operation, and the appropriate anti-adhesion material should be selected according to the patients’ condition and surgical needs.
Objective To investigate the latest development of tissue engineeredregenerative medicine in industrialization, with the intention to direct work in practical area. Methods A complete insight of regenerative medicine in industrialization was obtained through referring to update publications, visiting related websites, as well as learning from practical experience. Results The aerial view of the future of regenerative medicine was got based on knowledge of four different tissue engineering projects. Conclusion All present efforts should be devoted to regenerative medicine area meeting the industrialized trends.
OBJECTIVE: From the point of view of material science, the methods of tissue repair and defect reconstruct were discussed, including mesenchymal stem cells (MSCs), growth factors, gene therapy and tissue engineered tissue. METHODS: The advances in tissue engineering technologies were introduced based on the recent literature. RESULTS: Tissue engineering should solve the design and preparation of molecular scaffold, tissue vascularization and dynamic culture of cell on the scaffolds in vitro. CONCLUSION: Biomaterials play an important role in the tissue engineering. They can be used as the matrices of MSCs, the delivery carrier of growth factor, the culture scaffold of cell in bioreactors and delivery carrier of gene encoding growth factors.
Objective To introduce the development of the collagen materials in drug release and tissue engineering. Methods Literature review and complex analysis were adopted. Results In recent years, some good progress hasbeen made in the studies of collagen, and study on collagen-based materials has become an investigative hotspot especially in tissue engineering. Some new collagen-based drug delivery andengineered materials have come into clinically-demonstrated moment, which willpromote their clinical applications in tissue repairs.ConclusionCollagen has been considered a good potential material in drug release, especially in the tissue-engineering field. To give collagen new characters we should pay more attention to grafting with different function branches through chemistry technique in the future work, except- moderate cross-linking treatment or commingling withother nature or synthesized macromolecules.
Objective To introduce the development of dextran-based hydrogel and its drug delivery system in drug sustained and/or controlled release, and to investigate their application in tissue engineering.Methods Related literature was extensively reviewed and comprehensively analyzed. Results In recent years, great progress was made in the studies of dextran-based hydrogels and study on dextran-based intelligent materials became an investigative hotspot especially in tissue engineering. Conclusion Dextran based hydrogel is considered to be a good potential material in field of drug delivery and tissue engineering. Endowed with new characteristics, a series of intelligent biomaterials can be derived from dextran-based hydrogels, which can be widely used in biomedicine. Further study should be done on the industrialization of its interrelated production.
Objective To summarize the latest developments in silk protein fiber as biomaterials and their applications in tissue engineering. Methods Recent original literature on silk protein fiber as biomaterials were reviewed, illustrating the properties of silk protein fiber biomaterials. Results The silk protein fiber has the same functions of supporting the cell adhesion, differentiation and growth as native collagen, and is renewed as novel biomaterials with good biocompatibility, unique mechanical properties and is degradable over a longer time. Conclusion Silk protein-fiber can be used as asuitable matrix for three dimensional cell culture in tissue engineering. It has a great potential applications in other fields.
Objective To review the application of genipin for the modification of natural biomaterials as a crosslinking agent and progress in research. Methods Domestic and foreign literature on application of genipin for the modification of natural biomaterials as a crosslinking agent was thoroughly reviewed. Results Genipin is an effective natural crosslinking agent with a very low level of cytotoxicity compared with conventional synthetic crosslinking agents. Tissues fixed with genipin can maintain a high level of stability as well as resistance to enzymatic degradation. Conclusion Genipin is a promising substitute for conventional synthetic crosslinking agents, which has offered an alternative for modification of natural biomaterials for tissue engineering.
ObjectiveTo summarize the developments of oxygen-generating materials as biomaterials and its applications in tissue engineering. MethodsThe recent literature on oxygen-generating materials as biomaterials was extensively reviewed, illustrating the properties and applications of oxygen-generating materials in tissue engineering. ResultsOxygen-generating materials as biomaterials have good biocompatibility and degradability. It supports the cell adhesion differentiation and growth. It is used for repairing liver, pancreas, myocardium, and so on. After modification, oxygen-generating materials can be extensively used in tissue engineering. ConclusionOxygen-generating materials is a good biomaterial, which has a great potential applications in tissue engineering.