Objective To explore changes in the height and width of the cervical intervertebral foramina of C6,7 before and after the C5,6 discetomy, the replacement or the anterior intervertebral fusion so as to provide the theoretical basis for the clinical practice. Methods Eleven fresh cervical spinal specimenswere obtained from young adult cadavers. The specimens of C5,6 were divided into the integrity group, the discectomy group, the artificial disc replacement group, and the intervertebral fusion group. The range of variety (ROV) of the C6,7 intervertebral foramen dimensions (height, width) before and after the loading tests (0.75, 1.50 Nm) were measured in the 4 groups. Results The C6,7 intervetebral foramen height and width increased significantly during flexion (Plt;0.01) but decreased significantly during extension (Plt;0.01). There was a significantdifference between the two test conditions in each of the 4 groups (Plt;0.01). However, in the two test conditions there was no significant difference in ROV of the C6,7 intervetebral foramen height and width during flexion and extension betweenthe integrity group, the discectomy, and the artificial disc replacement group(Pgt;0.05), but a significant difference in the above changes existed in the intervertebral fusion group when compared with the other 3 groups (Plt;0.05). In the same group and under the same conditions, the ROV of the C6,7 intervetebral foramen height and width was significantly different in the two test conditions (Plt;0.01). Conclusion The results have indicated thatartificial disc replacement can meet the requirements of the normal cervical vitodynamics. The adjacent inferior cervical intervetebral foramen increases during flexion but decreases during extension. The intervertebral fusion is probably one of the causes for the cervical degeneration or the accelerated degeneration and for the cervical spondylotic radiculopathy and the brachial plexus compression.
ObjectiveTo investigate the biomechanical properties of artificial ligament in the treatment of injuries to distal tibiofibular syndesmosis so as to provide a scientific basis for clinical application. MethodsSixteen fresh ankle specimens were harvested from 8 normal fresh-frozen cadavers. The initial tests were performed on 16 intact specimens (group A) and then the distal tibiofibular syndesmosis injury models were made (group B); the distal tibiofibular syndesmosis was fixed with artificial ligament in 8 specimens (group C) and with cannulated lag screw in the other 8 specimens (group D). The pros and cons of different fixation methods were analyzed by displacement, stress shielding effect, the strength and stiffness of ankle joints, the contact area of tibiotalar articular surface and the contact stress. ResultsUnder the physiological loading or combined with external rotation moment, the displacement of group C was significantly lower than that of groups B and D (P < 0.05), but no significant difference was found between groups A and C (P > 0.05); and there were significant differences among groups A, B, and D (P < 0.05). The rates of stress shielding in the tibia and fibula of group C were significantly lower than those of group D (t=-71.288, P=0.000;t=-97.283, P=0.000). The stress strength in tibia of group C was significantly higher than that of groups A and D (P < 0.05), but no significant difference was found between groups A and D (P > 0.05). Group C had the highest stress strength in fibula, followed by group A, group D had the lowest; differences were significant among 3 groups (P < 0.05). There was no significant difference in shear strength among groups A, C, and D (P > 0.05). The axial stiffness in tibia of group D was significantly lower than that of groups A and C (P < 0.05), but no significant difference was found between groups A and C (P > 0.05). The axial stiffness in fibula of group C was significantly higher than that of groups A and D (P < 0.05), but no significant difference was found between groups A and D (P > 0.05). Group C had the highest shear stiffness in tibia and fibula, followed by group D, group A had the lowest; differences were significant among 3 groups (P < 0.05). In groups A, C, and D, the contact area of tibiotalar articular surface gradually reduced, and the contact stress gradually increased, and differences were significant among 3 groups (P < 0.05). ConclusionFixation of distal tibiofibular syndesmosis injury with artificial ligament can better meet the physiological functions of the distal tibiofibular syndesmosis and has lower stress shielding, better stress distribution. Hopefully, it can reduce the complications of the distal tibiofibular syndesmosis injuries and become a better treatment choice.
To investigate the effects of augmentation with bone cement on the biomechanics of the dynamic hip screw (DHS) fixation in the intertrochanteric fracture specimen that has a normal bone density.MethodsTwentyfour matched pairs of the embalmed male upper femora (48sides) were used to make the specimens of the intertrochanteric fracture of Type A2. All the specimens were fixed with DHS. The right femur specimen from each pair was fixed by augmentation with DHS (the augmentation group) and the left femur specimen was fixed with the conventional fixation (the control group). Thebiomechanical tests on the bending stiffness and the torsional stiffness were performed with the servohydraulic testing machine in the two groups.ResultsThe maximum load and the maximum torque were 3 852.160 2±143.603 1 N and 15.5±2.6 Nm in the augmentation group and 3 702.966 7±133.860 1 N and 14.7±3.4 Nm in the control group. There was no significant difference in the biomechanical effects between the two groups (P>0.05). Conclusion The augmenting fixation with bone cement in the intertrochanteric fracture specimen with a normal bone density has no significant effect on the strength of the DHS augmentation or on the overall stability of the fractured bone.
Objective To evaluate the biomechanicalproperties and structuralcharacteristics of various composites of partially decalcified allogenic bone matrix gelatin and bone cement at different ratios. Methods According to Urist method, partially decalcified allogenic bone matrix gelatin was prepared and mixedwith bone cement at different ratios of 0, 400, 500, and 600mg/g. Then the comparisons of these composites were performed in microstructure, ultimate compression strength and ultimate bending strength properties. Results The electronic microscope showed that the bone particles and bone cement were distributed evenly in the composite, irregularly connecting by multiple points; with the increase ofbone particles and decrease of bone cement in the composite, there were more and more natural crevices, varying from 100 μm to 400 μm in width, in the biomaterials. Of all the composites with the ratios of 0, 400,500, and 600 mg/g, the measurements of ultimate compression strength were (71.7±2.0) MPa, (46.9±3.3) MPa, (39.8±4.1) MPa, and (32.2±3.4) MPa, respectively; and the measurements ofultimate bending strength were (65.0±3.4) MPa, (38.2±4.0) MPa, (33.1±4.3) MPa and (25.3±4.6) MPa, respectively. Conclusion The compositeof partially decalcified allogenic bone matrix gelatin and bone cement has a good biomechanical property and could be easily fabricated and re-shaped, which make it available to be used clinically as an idea bone graft biomaterial.
Objective To discuss the effect of the calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint and its clinical significance. Methods Ten freshfrozen foot specimens, three-dimensional kinematics oftalonavicular joint were determined in the case of neutral position, dorsiflexion, plantoflexion, adduction, abduction, inversion and eversion motion by meansof threedimensional coordinate instrument(Immersion MicroScribe G2X) before and after calcaneocuboid arthrodesis under non-weight with moment of couple, bending moment, equilibrium dynamic loading. Calcaneocuboid arthrodesis was performed on these feet in neutral position and the lateral column of normal length. Results A significant decrease in the three-dimensional kinematics of talonavicular joint was observed(P<0.01)in cadaver model following calcaneocuboid arthrodesis. Talonavicular joint motion was diminished by 31.21%±6.08% in sagittal plane; by 51.46%±7.91% in coronal plane; by 36.98%±4.12% in transverse plane; and averagely by 41.25%±6.02%. Conclusion Calcaneocuboid arthrodesis could limite motion of the talonavicular joints, and the disadvantage of calcaneocuboid arthrodesis shouldn’t be neglected.
Objective To develop a kind of biological artificial knee joint prosthesis with stereo mesh surface for rabbit, to observe its function after being implanted into rabbit knee joint and to evaluate its biomechanical property.Methods Thirty adult New Zealand rabbits were randomized into experimental and control groups (n=15), total left knee arthroplasty was performed in both groups, no patella replacement was performed. Biological artificial knee joint prosthesis with stereo mesh surface was self-designed. The adjacent 4/5 surface of femur and tibia stem of the prosthesis was covered by stainlesssteel stereo mesh, the inner surface of femur condyles and tibia plateau was welded with two layers of stainless steel stereo mesh, then the prosthesis underwent biological fixation in the experimental group. Meanwhile, prosthesis having smooth marrow internal stem, femoral condyle and tibial plateau internal surface and sharing the same shape and size with the experimental group were prepared and fixed with bone cement in the control group. The postoperative general condition of animal was observed. At 1, 3 and 6 months after operation, the rabbits were killed for gross observation, X-ray examination was conducted to observe the fixation condition of prosthesis and heal ing condition, the range of motion (ROM) of knee joints was tested, biomechanics test was carried out and the maximum shear strength of prosthesis bone interface was calculated. Results In each group, there was 1 rabbit died and new one was added during the second experiment. The others survived till the end of the experiment and crawled normally 7 days after operation. For the excellent and good rate concerning the recovery of ROM of the knee joint at 1, 3 and 6 months after operation, the experimental group was 60%, 80% and 80%, respectively, and the control group was 60%, 80% and 60%, respectively, indicating there were no significant differences between two groups (P gt; 0.05). For the experimental group, the gross observation showed large quantities of bone reconstruction, X-ray films indicated the prosthesis fitted well, with sol id fixation and without dislocation and lossening;while for the control group, the gross observation showed no bone reconstruction, X-ray films displayed the location of prosthesis was good, with sol id fixation and without dislocation and loosening. Radiolucent zone around the femur prosthesis and stress shileding occured 6 months after operation. For the maximum shear strength, the experimental group was less than the control group at 1 month after operation; and it was higher than the control group at 3 and 6 months after operation, indicating there were significant differences betweentwo groups (P lt; 0.01). Conclusion The fixation strength of the biological artificial knee joint prosthesis with stereo meshsurface is better than that of the bone cement prosthesis in rabbits at 3 and 6 months after operation.
Objective To evaluate the biomechanical characteristicsof titanium mesh with anterior plate fixation or ilium autograft in anterior cervical decompression.Methods Six fresh cervical spine specimens(C3-7) of young cadaver were used in the biomechanical test. After C5, C5,6 and C4-6 were given vertebrectomy,ilium autograft and titanium mesh with anterior plate fixation were performed. Their stabilities of flexion,bilateral axial rotation,the lateral bending and the extension were tested. Intact cervical spine specimens served as control group. Results Ilium autograft improved the stability of the unstable cervical vertebrae and decreased the flexion, the lateral bending or the extension, showing a significant difference when compared with control group(Plt;0.05). Whereas, axial rotational motion was decreased insignificantly(Pgt;0.05). Titanium meshwith anterior plate fixation improved the stability of the unstable spine and decreased the flexion,the bilateral axial rotation,the lateral bending or the extension, showing a significant difference when compared with control group(Plt;0.05). Conclusion The vertebrectomy and anterior cervical fusion by ilium autograft was the least stable construct of all modes tested,and the titanium mesh implantation is stabler than the intact cervical sample.
Objective To simulate anterosuperior instabil ity of the shoulder by a combination of massive irreparable rotator cuff tears and coracoacromial arch disruption in cadaveric specimens, use proximally based conjoined tendon transfer forcoracoacromial l igament (CAL) reconstruction to restrain against superior humeral subluxation, and investigate its feasibility and biomechanics property. Methods Nine donated male-adult and fresh-frozen cadaveric glenohumeral joints were applied to mimic a massive irreparable rotator cuff tear in each shoulder. The integrity of the rotator cuff tendons and morphology of the CAL were visually inspected in the course of specimen preparation. Cal ipers were used to measure the length of the CAL’s length of the medial and the lateral bands, the width of coracoid process and the acromion attachment, and the thickness in the middle, as well as the length, width and thickness of the conjoined tendon and the lateral half of the removed conjoined tendon. The glenohumeral joints were positioned in a combination of 30° extension, 0° abduction and 30° external rotation. The value of anterosuperior humeral head translation was measured after the appl ication of a 50 N axial compressive load to the humeral shaft under 4 sequential scenarios: intact CAL, subperiosteal CAL release, CAL anatomic reattachment, entire CAL excision after lateral half of the proximally based conjoined tendon transfer for CAL reconstruction. Results All specimens had an intact rotator cuff on gross inspection. CAL morphology revealed 1 Y-shaped, 4 quadrangular, and 4 broad l igaments. The length of the medial and lateral bands of the CAL was (28.91 ± 5.56) mm and (31.90 ± 4.21) mm, respectively; the width of coracoid process and acromion attachment of the CAL was (26.80 ± 10.24) mm and (15.86 ± 2.28) mm, respectively; and the thickness of middle part of the CAL was (1.61 ± 0.36) mm. The length, width, and thickness of the proximal part of the proximally based conjoined tendon was (84.91 ± 9.42), (19.74 ± 1.77), and (2.09 ± 0.45) mm, respectively. The length and width of the removed lateral half of the proximally conjoined tendon was (42.67 ± 3.10) mm and (9.89 ± 0.93) mm, respectively. The anterosuperior humeral head translation was intact CAL (8.13 ± 1.99) mm, subperiosteal CAL release (9.68 ± 1.97) mm, CAL anatomic reattachment (8.57 ± 1.97) mm, and the lateral half of the proximally conjoined tendon transfer for CAL reconstruction (8.59 ± 2.06) mm. A significant increase in anterosuperior migration was found after subperiosteal CAL release was compared with intact CAL (P lt; 0.05). The translation after CAL anatomic reattachment and lateral half of the proximally conjoined tendon transfer for CAL reconstruction increased over intact CAL, though no significance was found (P gt; 0.05); when they were compared with subperiosteal CAL release, the migration decreased significantly (P lt; 0.05). The translation of lateral half of the proximally conjoined tendon transfer for CAL reconstruction increased over CAL anatomic reattachment, but no significance was evident (P gt; 0.05). Conclusion The CAL should be preserved or reconstructed as far as possible during subacromial decompression, rotator cuff tears repair, and hemiarthroplasty for patients with massive rotator cuff deficiency. If preservation or the insertion reattachment after subperiosteal release from acromion of the CAL of the CAL is impossible, or CAL is entirely resected becauseof previous operation, the use of the lateral half of the proximally based conjoined tendon transfer for CAL reconstruction isfeasible.
Objective To analyze the biomechanical changes of the adjacent cervical facet joints when the angled cervical prosthesis is replaced. Methods A total of 400 northwestern people were involved, with an age of 40 years or older.The cervical vertebra lateral X-ray films were taken, and the cervical angles were measured by professional computer aided design software, then the cervical intervertebral disc prosthesis with 10° angle was designed. The finite element models of C4,5and C4-6 segments with intact cervical discs were developed; the C4,5 disc was replaced by the cervical prosthesis with 0° and 10° angle respectively; and then all models were subjected to axial loading, flexion/extension, lateral bending, and torsion loading conditions; the stress effects on adjacent facet joints after replacement were observed by comparing with that of the intact model. Results The cervical angles were (9.97 ± 3.64)° in C3,4, (9.95 ± 4.34)° in C4,5, (8.59 ± 3.75)° in C5,6, and (8.49 ± 3.39)° in C6,7, showing no significant difference between C3,4 and C4,5, C5,6 and C6,7 (P gt; 0.05) and showing significant differences between the other cervical angles (P lt; 0.05). When C4,5 model was axially loaded, no significant difference in equivalent shearing stress were observed in intact, 0°, and 10° groups; at flexion/extension loading, the stress was biggest in intact group, and was smallest in 10° group; at lateral bending, the stress got the high rank in intact group, and was minimum in 10° group; at torsion loading, the stress state of 10° group approached to the intact one condition. When C4-6 model was loaded, the facet joint stress of the replaced segment (C4,5) decreased significantly at axial loading, flexion/extension, and lateral bending; while no obvious decrease was observed at torsion loading; the stress of the adjacent inferior disc (C5,6) decreased significantly at axial loadingand lateral bending condition, while less decrease was observed at torsion loading, no significant change at flexion/extension condition, it approached to that of the intact one. Conclusion The finite element analysis reveals that the biomechanical properties of 10° designed prosthesis is approximate to that of the intact cervical disc, thus the 10° designed prosthesis can meet the requirements of biomechanical function reconstruction of the cervical spine.
【Abstract】 Objective To investigate the effect of the volar capsular l igament complex on stabil ity of the wrist jointand to provide basic biomechanical theoretical criteria for cl inic appl ication of the external fixator. Methods Nine upperl imbs specimens (left 6, right 3) were taken from fresh adult cadavers to make wrist joint-bone capsular l igament complex specimens. Firstly, soft tissues of forearms and hands were resected and capsular membranes and l igaments were reserved to make the bone-articular l igament complex (normal specimen). Secondly, the volar capsular l igament complex was cut off from radial malleolus to ulnar malleolus (impaired specimen). Thirdly, the impaired volar capsular l igament complex was interruptedly sutured by the use of 4# suture silk (repaired specimen). To simulate cl inical operation with external fixator, the biomechanical test was done according to the sequence (normal, impaired, repaired, repaired and fixed, impaired and fixed). Statistical significance was analyzed through selected loads at the three different shifts (1.5, 2.0, 2.5 cm). Results According to the sequence (normal, impaired, repaired, repaired and fixed, impaired and fixed), when the shift was 1.5 cm, the different respective loads were (60.74 ± 20.60), (35.23 ± 13.88), (44.36 ± 20.78), (168.40 ± 29.21) and (139.00 ± 33.18) N, respectively. When the shift was 2.0 cm, the different loads were (138.46 ± 12.93), (87.17 ± 24.22), (97.52 ± 23.29), (289.00 ± 54.29) and (257.98 ± 55.74) N, respectively. When the shift was 2.5 cm, the different loads were (312.87 ± 37.15), (198.16 ± 37.14), (225.66 ± 30.96), (543.15 ± 74.33) and (450.35 ± 29.38) N, respectively. There was no statistically significant difference between the impaired and repaired specimens (P gt; 0.05). Similarly, there was statistically significant difference among the rest specimens (P lt; 0.05). The same statistical results were obtained when the two different shifts were compared. There was statistically significant difference at the three different shifts for the same specimen (P lt; 0.05). Conclusion Volar capsular l igament complex is an important anatomic structure to keep stabil ity of the wrist joint. The carpal instabil ity arises out of the injured complex. Repairing the injured complex only can not immediately restore stabil ity of the wrist joint. The external fixator can effectively help to diminish the relative shift of the impaired capsular l igament complex, to reduce the load of the repaired complex and to protect the complex accordingly. The device plays an important role in maintaining stabil ity of the wrist joint.