west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bone morphogenetic protein 2" 25 results
  • EXPERIMENTAL STUDY ON TISSUE ENGINEERED BONES CONSTRUCTED BY HUMAN BONE MORPHOGENETIC PROTEIN 2 GENE-MODIFIED HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo investigate the bone regeneration potential of cell-tissue engineered bone constructed by human bone marrow mesenchymal stem cells (hBMSCs) expressing the transduced human bone morphogenetic protein 2 (hBMP-2) gene stably. MethodsThe full-length hBMP-2 gene was cloned from human muscle tissues by RT-PCR and connected into a vector to consturct a eukaryotic expression system. And then the gene expression system was transduced to hBMSCs with lipidosome. hBMSCs were transfected by hBMP-2 gene (experimental group) and by empty plasmid (negative control group), untransfected hBMP-2 served as blank control group. RT-PCR, dot-ELISA, immunohistochemical analysis and ALP activity were performed to compare and evaluate the situation of hBMP-2 expression and secretion after transfection. hBMSCs transfected by hBMP-2 gene were seeded on hydroxyapatite (HA) and incubated for 4 days to construct the hBMP-2 gene modified tissue engineered bone, and then the tissue engineered bone was observed by the inverted phase contrast microscope and scanning electron microscope. Then the hBMP-2 gene modified tissue engineered bone (group A, n=3), empty plasmid transfected hBMSCs seeded on HA (group B, n=3), hBMSCs suspension transfected by hBMP-2 gene (group C, n=3), and hBMP-2 plasmids and lipidosome (group D, n=3) were implanted into bilateral back muscles of nude mice. The osteogenic activity was detected by HE staining and alcian blue staining after 4 weeks. ResultsAt 48 hours and 3 weeks after transfection, RT-PCR and dot-ELISA results indicated that the transfected hBMSCs could express and secrete active and exogenous hBMP-2 stably. The immunohistochemical staining was positive, and the ALP activity in the transfected hBMSCs was significantly higher than that in two control groups (P < 0.05). The transfected hBMSCs had a good attaching and growing on the three-demension suface of HA under inverted phase contrast microscope and scanning electron microscope. In vivo study indicated that a lot of new bone formation was obviously found at 4 out of 6 sides of back muscles in group A. Some new bone formation at both sides of back muscles was observed in 1 of 3 mice in group B. No new bone formation was found in group C. A few new bone formation was observed at one side of back muscles in group D. ConclusionThe tissue engineered bone constructed by hBMP-2 gene modified hBMSCs and HA is able to express and secrete active hBMP2 stably and can promote new bone formation effectively in muscles of nude mice.

    Release date:2016-12-12 09:20 Export PDF Favorites Scan
  • AN IMMUNOLOGICAL STUDY ON ADENOVIRUS MEDIATED HUMAN BONE MORPHOGENETIC PROTEIN 2 GENE THERAPY

    Objective To evaluate the host immune reaction against adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP-2) gene therapy in repairof tibial defects. Methods Twelve goats were made 2.1 cm segmental defects in he tibial diaphysis and divided into 2 groups. AdvhBMP2 transfected marrow mesenchymal stem cells(MSCs) and untransfected MSCs were implanted into the defect sites of transfected group(n=7) and untransfected group (n=5), respectively. The defect repair was observed by X-ray films after 4, 8, 16 and 24 weeks of transplantation and cellular and humoral immune reactions to adenovirus were assayed before implantation and after implantation. Results More bony callus was found in the bone defects of transfected group. The healing rates were 6/7 in transfected group and 2/5 in untransfected group, respectively at 24 weeks after implantation. The mixed culture of lymphocytes and MSCs showed that the lymphocytes stimulation indexes (SI) increased 14 days after implantation, and there was significant difference between the transfected group (4.213±1.278) and the untransfected group(-0.310±0.147,Plt;0.05); SI decreased after 28 days, but there was no significant difference between the transfected group (2.544±0.957) and the untransfected group (3.104±0.644,Pgt;0.05). After 14, 28, 49, and 120 days of treatment, the titer values of neutralizing antibody against Adv-hBMP-2 (log0.1) were 2.359±0226, 2.297±0.200, 2.214±0.215 and 2.297±0.210 in transfected group, and -0.175±0.335, -0.419±0.171, 0±0.171 and 0.874±0.524 in untransfected group, being significant differences betweentwo groups(Plt;0.05). Conclusion Adenovirus mediated BMP-2gene therapy can cause cellular and humoral immune reactions against adenovirus, which can eliminate the influence of adenoviral genes and proteins within a certain period. 

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • CONSTRUCTION AND IDENTIFICATION OF ADENOVIRUS VECTOR EXPRESSING BONE MORPHOGENETIC PROTEIN 2 AND TRANSFORMING GROWTH FACTOR β3 GENES AND THEIR EXPRESSION IN BONE MARROW MESENCHYMAL STEM CELLS OF DIANNAN SMALL-EAR PIGS

    ObjectiveTo construct and identify the recombinant adenovirus vector expressing bone morphogenetic protein 2(BMP-2) and transforming growth factor β3(TGF-β3) genes,to observe the expressions of BMP-2 and TGF-β3 after transfected into bone marrow mesenchymal stem cells (BMSCs) of the Diannan small-ear pigs. MethodsBMP-2 cDNA and TGF-β3 cDNA were amplified by PCR,and were subcloned into the pEC3.1(+) plasmid to obtain pEC-GIE 3.1-BMP-2 and pEC-GIE3.1-TGF-β3 plasmid respectively.They were subcloned into pGSadeno vector by homologous recombination reaction and HEK293 cells were transfected after linearization to obtain Ad-BMP-2 and Ad-TGF-β3.The BMSCs were isolated from the bone marrow of Diannan small-ear pig and cultured.The 3rd passage BMSCs were transfered with Ad-BMP-2(group A),Ad-TGF-β3(group B),Ad-BMP-2+Ad-TGF-β3(group C),and untransfected cells served as a control (group D).The expressions of BMP-2 and TGF-β3 genes and proteins were detected by PCR,immunofluorescence,and Western blot.The chondrogenic differentiation of BMSCs was evaluated by immunohistochemical of collagen type Ⅱ. ResultsThe Ad-BMP-2 and Ad-TGF-β3 were constructed successfully and confirmed by PCR and sequencing.The expression clones of Ad-BMP-2 and Ad-TGF-β3 were packaged into maturated adenovirus successfully,the titer was 5.6×108 and 1.6×108 pfu/mL respectively.The PCR results showed a light band at 310 bp in group A and at 114 bp in group B,and both 310 bp and 114 bp bands in group C,but no band in group D.The image of immunofluorescence showed that there were red fluorescence and green fluorescence expressions in the cytoplasm of BMSCs at 72 hours after transfection in groups A and B,respectively;in group C,both red and green fluorescence expressions were detected,and no red or green fluorescence was detected in group D.The results of Western blot showed that there was a light band at 18×103 in group A and at 50×103 in group B;both 18×103 and 50×103 bands were detected in group C;but no band was detected in group D.The cells were positive for collagen type Ⅱ in groups A,B,and C;group C acquired strong collagen type Ⅱ staining when compared with group A and group B;in group D,the cells were negative for collagen type Ⅱ staining. ConclusionThe recombinant adenovirus vector expressing BMP-2 and TGF-β3 are constructed successfully.The BMP-2 and TGF-β3 genes could be expressed effectively in BMSCs of Diannan small-ear pig after transfection,which could afford modified seeding cells for cartilage tissue engineering.

    Release date: Export PDF Favorites Scan
  • IN VITRO DIFFERENTIATION OF SYNOVIAL-DERIVED MESENCHYMAL STEM CELLS INFECTED BY ADENOVIRUS VECTOR MEDIATED BY BONE MORPHOGENETIC PROTEIN 2/7 GENES INTO FIBROCARTILAGE CELLS IN RABBITS

    Objective To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. Methods SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 ± 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. Results SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. Conclusion It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • BMP-2 GENE TRANSFECTED HUMAN BONE MARROW MESENCHYMAL STEM CELLS INDUCING IN VIVO ECTOPIC OSTEOGENESIS OF NUDE MICE

    Objective To evaluate the osteogenic potential of human bone marrow mesenchymal stem cells (MSCs) transferred with human bone morphogenetic protein 2(BMP 2) gene by adenovirus. Methods The MSCs were isolated from human bone marrow and cultured in vitro. They were divided into 3 groups: Adv hBMP 2 transduced group; Adv βgal transduced group; untransduced group. Western immunoblot analysis, alkaline phosphatase(ALP) staining, Von Kossa staining, and a quantitative ALP activity assay were performed. Nine unde mice received injection into a thigh muscle to test the osteoinductivity of the three types of cells. Results In the Adv-hBMP-2 transprotein; most MSCs were stained positively for ALP activity 9 day after transduction; the MSCs reached the peak of ALP activity 12 day after transduction; the calcified nodes formed 21 days after transduction. The ectopic bones formed in the thigh muscles of the nude mice. Little bone formation was observed in the other groups 4 weeks after cell injection. Conclusion Adenovirus mediated hBMP-2 gene transfection can induce osteogenesis of human bone marrow mesenchymal stem cells.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Experimental study on repairing rabbit skull defect with bone morphogenetic protein 2 peptide/functionalized carbon nanotube composite

    ObjectiveTo observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH2) groups with materials.MethodsTwenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly (L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue.ResultsCT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant (P<0.05).ConclusionThrough covalent binding and using -NH2 to bound peptides with materials, the best bone repair effect can be achieved.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
  • DOSE-DEPENDENCE OF BONE MORPHOGENETIC PROTEIN 2-DERIVED PEPTIDE ON OSTEOGENIC INDUCTION IN MARROW MESENCHYMAL STEM CELLS IN VITRO

    Objective To investigate the effect of the synthetic bone morphogenetic protein 2 (BMP-2)derived peptide on the osteogenic induction in the marrow mesenchymal stem cells (MSCs)and to evaluate the osteoinductivity and dosedependence of the BMP-2 derived peptide in vitro. Methods MSCs of 4-week old Wistar rats were separated and cultured. In the 3rd passage, the conditional culture medium was changed, in which the BMP-2-derived peptide in the following doses was added: 300,200, 100, 50, and 0 μg/ml, respectively (Groups A-E). The activity of alkaline phosphatase (ALP)and the amount of calciumdeposition were meassured at 5,10,15 and 20 days during the culture with the conditional culture medium. The real-time fluorescent quantitative polymerase chain reaction (FQ-PCR) was performed to measure the mRNA expressions of collagen type Ⅰ, osteopontin (OPN), and osteocalcin(OCN)and to measure the osteoinductivity of the BMP-2-derived peptide in the different concentrations.Results Under the inverted phase contrast microscope, MSCs cultured in the conditional culture medium for 3-4 days were changed in shape, from long fusiform to short fusiform or polygon. As the concentration of the BMP-2-derived peptide increased, the time for MSCs to change into the osteoblasts decreased. There was a significantly greater level of the ALP activity and amount of the calcium deposition in Groups A and B than in the other groups(Plt;0.05). However,there was no significant difference between Group A and Group B (Pgt;0.05). Theresult of FQPCR showed that after MSCs were cultured in the different doses of theconditional culture medium for 14 days, the mRNA expressions of collagen type Ⅰ, OPN andOCN were at higher levels. An increasing order in the level of the cycle threshold (Ct) was found in the following groups: Agt;Bgt;Cgt;D. Almost no expression was found in Group E. The Ct levels were significantly greater in Groups A and B thanin Groups C and D(Plt;0.05). However, there was no significant difference between Group A and Group B (Pgt;0.05).ConclusionThe BMP-2-derived peptide can greatly promote differentiation of MSCs into the osteoblasts, the promotion of osteogenesis has a dosedependent pattern, and the best inducing dosage is 200 μg/ml.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • EFFECTS OF MELATONIN ON EXPRESSION OF BONE MORPHOGENETIC PROTEIN 2 AND INTERLEUKIN 1β IN ARTICULAR CARTILAGE OF RAT WITH OSTEOARTHRITIS

    Objective Melatonin (MLT) can increase the expression of cartilage-derived growth factor and stimulate the synthesis of cartilage matrix. To investigate the prevention and treatment effects of MLT on damaged cartilage through observing the expressions of bone morphogenetic protein 2 (BMP-2) and interleukin 1β (IL-1β) in articular cartilage of the rats with osteoarthritis (OA). Methods Forty SPF 4-week-old male SD rats (weighing 120-150 g) were randomly divided into 4 groups (n=10): normal control group (group A), OA group (group B), OA/pinealectomy group (group C), and OA/ pinealectomy/MLT group (group D). The rats of group A served as a control without treatment. The rats of groups B, C, andD underwent left knee joint injection of 0.2 mL 4% papain solution 1 time every other day for 2 weeks for establ ishing OAmodel. Two weeks after papain injection, the rats of groups C and D were exposed to continuous l ight for 24 hours (intensity of illumination: 500 lx) for creating pinealectomy models. And at the next day after pinealectomy model establ ishing, the rats of group D were treated with intra-articular injections of 0.2 mL 20 mg/mL MLT solution 4 times a week for 4 weeks. At 1 week after last MLT injection, the venous blood samples were taken in groups A, B, and C to test the level of serum MLT by ELISA, respectively, and then the specimens of left cartilage of femoral condyle were harvested for macroscopic, histological, and immunohistochemical examinations in 4 groups. Results The OA and pinealectomy models of rats were successfully establ ished, and all rats survived. There were significant differences in the serum MLT level among groups A, B, and C, and among different time points at the same group (P lt; 0.05). In group A, articular cartilage surface was smooth and elastic, and chondrocytes arranged regularly. In groups B and C, articular cartilage surface was rough, cartilage defects and subchondral bone exposure were observed in some areas, and chondrocytes arranged irregularly. In group D, cartilage surface was more smooth than that in groups B and C, and the degrees of cartilage defect and subchondral bone exposure decreased with regular arrangment of chondrocytes. There were significant differences in Mankin scores and integral absorbance values among 4 groups (P lt; 0.05). Conclusion Exposure to continuous l ight can accelerate degeneration process of articular cartilage of OA rats. Injections of 0.2 mL MLT solution (20 mg/mL) by intra-articular for 4 weeks can inhibit the progress of cartilage defects. Upregulationof anabol ic factor of BMP-2 as well as down-regulation of catabol ic factors of IL-1β is associated with cartilage repairin the pathological features of OA.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • EFFECT OF INHIBITOR OF DIFFERENTIATION 1 GENE TRANSFECTION ON BONE MORPHOGENETIC PROTEIN 2 PROMOTING CHONDROGENIC GENE EXPRESSIONS OF RABBIT INTERVERTEBRAL CARTILAGE ENDPLATE CELLS

    ObjectiveTo study the effect of inhibitor of differentiation 1 (Id1) gene transfection on bone morphogenetic protein 2 (BMP-2) promoting the expressions of collagen type Ⅱ (COL Ⅱ) and aggrecan (ACAN) in intervertebral cartilage endplate cells (EPCs). MethodsEPCs were harvested from the New Zealand white rabbits, the 2nd generation EPCs were used for experiment. The transfection efficiency of green fluorescent protein blank lentivirus, high expression of Id1 lentivirus, RNA interference (RNAi) Id1 lentivirus transfection in the EPCs were observed by the fluorescence microscopy, real-time fluorescence quantitative PCR, and Western blot. Blank vector, single BMP-2 gene, BMP-2 and Id1 genes were transfected into EPCs, respectively. The cell morphology and the expressions of COL Ⅱ and ACAN in each group were observed. ResultsLentiviral transfection had no significant effect on the cell morphology. The EPCs were effectively transfected by the high expression Id1 lentivirus and RNAi Id1 lentivirus; the expression of Id1 mRNA was also significantly interfered. The expressions of COL Ⅱ and ACAN mRNA and synthesis of COL Ⅱ and ACAN protein were significantly higher in BMP-2 lentivirus and high expression Id1 lentivirus groups than control group (P<0.05). The expression of COL Ⅱ and ACAN protein were down regulated in the cartilage endplate cells when the expression of Id1 gene was decreased (P<0.05). ConclusionUp-regulation of Id1 gene expression can enhance the effects of BMP-2 on the synthesis of COL Ⅱ and ACAN in EPCs.

    Release date: Export PDF Favorites Scan
  • EXPERIMENT OF BONE MORPHOGENETIC PROTEIN 2 INDUCED CHONDROGENIC DIFFERENTIATION OF HUMAN Achilles TENDON-DERIVED STEM CELLS IN VITRO

    Objective To investigate the effects of bone morphogenetic protein 2 (BMP-2) on the chondrogenic differentiation of human Achilles tendon-derived stem cells (hATDSCs) in vitro. Methods Achilles tendon was harvested from a voluntary donor with acute Achilles tendon rupture. And nucleated cells were obtained by digesting with collagenase and were cultured to the 3rd passage. The flow cytometry was used to measure the immunophenotyping; and Oil red O staining, alizarin red staining, and Safranin O/fast green staining were used to identify the adipogenic differentiation, osteogenic differentiation, and chondrogenic differentiation, respectively. The hATDSCs pellet was cultured in complete culture medium with (experimental group) or without recombinant human BMP-2 (rhBMP-2) (control grup) for 3 weeks. Chondrogenic differentiation of hATDSCs was evaluated by HE staining, Safranin O/fast green staining, and immunohistochemical staining for collagen type II; and the mRNA expressions of SOX9, collagen type II, and Aggrecan were detected by real-time fluorescence quantitative PCR. Results Primary hATDSCs cultured in vitro showed clonal growth; after cell passage, homogeneous spindle fibroblast-like cells were seen. The cells were positive for CD44, CD90, and CD105, while negative for CD34, CD45, and CD146. The results were positive for Oil red O staining at 3 weeks after adipogenic differentiation, for alizarin red staining at 4 weeks after osteogenic differentiation, and for Safranin O/fast green staining at 3 weeks after chondrogenic differentiation. After hATDSCs were induced with rhBMP-2 for 3 weeks, pellets formed in the experimental group, and the size of pellets was significantly larger than that in the control group; the results of HE staining, Safranin O/fast green staining, and immunohistochemical staining for collagen type II were all positive. The results of real-time fluorescence quantitative PCR showed that the mRNA expressions of SOX9, collagen type II, and Aggrecan in the experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion BMP-2 can promote proteoglycan deposition and induce chondrogenic differentiation of hATDSCs in vitro. The effect of BMP-2 on hATDSCs might provide a possible explanation for histopathological changes of tendinopathy.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content