west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Data augmentation" 2 results
  • Medical image segmentation data augmentation method based on channel weight and data-efficient features

    In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
  • Research on type 2 diabetes prediction algorithm based on photoplethysmography

    To address the current issues of data imbalance and scarcity in photoplethysmography (PPG) data for type 2 diabetes mellitus (T2DM) prediction, this study proposes an improved conditional Wasserstein generative adversarial network with gradient penalty (CWGAN-GP). The algorithm integrated gated recurrent unit (GRU) networks and self-attention mechanisms to construct a generator, aiming to produce high-quality PPG signals. Various data augmentation methods, including the improved CWGAN-GP, were employed to expand the PPG dataset, and multiple classifiers were applied for T2DM prediction analysis. Experimental results showed that the model trained on data generated by the improved CWGAN-GP achieved the optimal prediction performance. The highest accuracy reached 0.895 0, and compared with other data enhancement methods, this approach exhibited significant advantages in terms of precision and F1-score. The generated data notably enhances the accuracy and generalization ability of T2DM prediction models, providing a more reliable technical basis for non-invasive early T2DM screening based on PPG signals.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content