west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electrocardiogram" 16 results
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • A review on intelligent auxiliary diagnosis methods based on electrocardiograms for myocardial infarction

    Myocardial infarction (MI) has the characteristics of high mortality rate, strong suddenness and invisibility. There are problems such as the delayed diagnosis, misdiagnosis and missed diagnosis in clinical practice. Electrocardiogram (ECG) examination is the simplest and fastest way to diagnose MI. The research on MI intelligent auxiliary diagnosis based on ECG is of great significance. On the basis of the pathophysiological mechanism of MI and characteristic changes in ECG, feature point extraction and morphology recognition of ECG, along with intelligent auxiliary diagnosis method of MI based on machine learning and deep learning are all summarized. The models, datasets, the number of ECG, the number of leads, input modes, evaluation methods and effects of different methods are compared. Finally, future research directions and development trends are pointed out, including data enhancement of MI, feature points and dynamic features extraction of ECG, the generalization and clinical interpretability of models, which are expected to provide references for researchers in related fields of MI intelligent auxiliary diagnosis.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
  • Electrocardiogram signal classification based on fusion method of residual network and self-attention mechanism

    In the diagnosis of cardiovascular diseases, the analysis of electrocardiogram (ECG) signals has always played a crucial role. At present, how to effectively identify abnormal heart beats by algorithms is still a difficult task in the field of ECG signal analysis. Based on this, a classification model that automatically identifies abnormal heartbeats based on deep residual network (ResNet) and self-attention mechanism was proposed. Firstly, this paper designed an 18-layer convolutional neural network (CNN) based on the residual structure, which helped model fully extract the local features. Then, the bi-directional gated recurrent unit (BiGRU) was used to explore the temporal correlation for further obtaining the temporal features. Finally, the self-attention mechanism was built to weight important information and enhance model's ability to extract important features, which helped model achieve higher classification accuracy. In addition, in order to mitigate the interference on classification performance due to data imbalance, the study utilized multiple approaches for data augmentation. The experimental data in this study came from the arrhythmia database constructed by MIT and Beth Israel Hospital (MIT-BIH), and the final results showed that the proposed model achieved an overall accuracy of 98.33% on the original dataset and 99.12% on the optimized dataset, which demonstrated that the proposed model can achieve good performance in ECG signal classification, and possessed potential value for application to portable ECG detection devices.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network

    Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.

    Release date:2025-02-21 03:20 Export PDF Favorites Scan
  • Artificial intelligence in wearable electrocardiogram monitoring

    Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • ECG Changes in Workers Exposed to High-Temperature: A Meta-analysis

    Objective To conduct a systematic review on the Electrocardiogram (ECG) changes in the workers exposed to high temperatures by means of meta-analysis.Methods The retrospective cohort studies on the relationship between high temperature and ECG abnormalities published from 1990 to May 2009 were searched in CNKI, VIP, WanFang database and CBM database. The literatures meeting the inclusive criteria were selected, the quality was assessed, the data were extracted, and the meta-analyses were conducted with RevMan 4.2.2 software. Results A total of 20 studies were included. The results of meta-analyses showed: the ECG abnormality rate of the high-temperature group was obviously superior to that of the control group with significant difference (OR=2.76, 95%CI 2.37 to 3.20, Plt;0.000 01). The high-temperature severely affected left ventricular hypertrophy (OR=3.49, 95%CI 2.83 to 4.31, Plt;0.000 01), sinus bradycardia (OR=2.83, 95%CI 2.33 to 3.43, Plt;0.000 01), and changes in ST-T segment (OR=2.63, 95%CI 1.48 to 4.68, P=0.000 10), which indicated that the abnormal changes of ECG, such as left ventricular hypertrophy, sinus tachycardia, sinus bradycardia, and changes in ST-T segment could be the sensitive indexes to monitor cardiovascular disease of workers exposed to high-temperature. Conclusion The incidence of ECG abnormalities caused by high-temperature operation is obviously superior to that of the control group, so it is required to strengthen the health monitoring and labor protection for the workers exposed to high temperature.

    Release date:2016-09-07 11:02 Export PDF Favorites Scan
  • Clinical Study of Dental Extraction with Electrocardiogram Monitoring

    ObjectiveTo discuss the safety of dental extraction with electrocardiogram (ECG) monitoring for cardiovascular patients. MethodsWe summarized and analyzed the clinical data of 933 cases of dental extraction with ECG monitoring from May 2010 to May 2011. Analysis of the change of heart rate and blood pressure in the process of dental extraction was also carried out. ResultsAll patients underwent the tooth extraction successfully. The heart rate and blood pressure increased after local anesthesia and in the process of tooth extraction without any accident. ConclusionUnder the premise of strict control of indications, dental extraction with the implementation of ECG monitoring has a very high security for patients with cardiovascular diseases or other systemic disorders.

    Release date: Export PDF Favorites Scan
  • Early classification and recognition algorithm for sudden cardiac arrest based on limited electrocardiogram data trained with a two-stages convolutional neural network

    Sudden cardiac arrest (SCA) is a lethal cardiac arrhythmia that poses a serious threat to human life and health. However, clinical records of sudden cardiac death (SCD) electrocardiogram (ECG) data are extremely limited. This paper proposes an early prediction and classification algorithm for SCA based on deep transfer learning. With limited ECG data, it extracts heart rate variability features before the onset of SCA and utilizes a lightweight convolutional neural network model for pre-training and fine-tuning in two stages of deep transfer learning. This achieves early classification, recognition and prediction of high-risk ECG signals for SCA by neural network models. Based on 16 788 30-second heart rate feature segments from 20 SCA patients and 18 sinus rhythm patients in the international publicly available ECG database, the algorithm performance evaluation through ten-fold cross-validation shows that the average accuracy (Acc), sensitivity (Sen), and specificity (Spe) for predicting the onset of SCA in the 30 minutes prior to the event are 91.79%, 87.00%, and 96.63%, respectively. The average estimation accuracy for different patients reaches 96.58%. Compared to traditional machine learning algorithms reported in existing literatures, the method proposed in this paper helps address the requirement of large training datasets for deep learning models and enables early and accurate detection and identification of high-risk ECG signs before the onset of SCA.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Relationship between Bicuspid Aortic Valve and Ascending Aortic Dilatation Assessed by Computed Tomography Angiography

    ObjectiveTo find the relationship between bicuspid aortic valve (BAV) and the dilatation or aneurysm of the aorta using electrocardiogram-gated computed tomography angiography (CTA). MethodsWe collected the clinical data of the BAV coexisting with suspected aortic dilatation or aneurysm from February 2012 through April 2015. A total of 124 patients were analyzed retrospectively. There were 97 males and 27 females at an anverage age of 50.35±16.26 years. According to the CTA, patients were classified into two groups: a pure BAV(without raphe) group and a BAV (with raphe) group. we recorded the aortic diameters, gender, age, and so on. ResultsOf the 124 patients, 91 (73.4%) had BAV with raphe, and 33 patients (26.6%) had pure BAV. The analysis revealed that the diameter of the annulus (23.90±3.34 mm vs. 21.74±3.46 mm, P=0.005), the sinuses of Valsalva (40.93±6.78 mm vs. 37.35±7.06 mm, P=0.022), the tubular portion of the ascending aorta (45.38±7.66 mm vs. 38.29±8.18 mm, P=0.0001), and the part of the aorta proximal to the innominate artery (34.19±4.98 mm vs. 30.23±6.62 mm, P=0.02) between patients with BAV with raphe and pure BAV had significant differences. And there was a significant difference in prevalence of dilatation of the aorta between patients with pure BAV and BAV with raphe [77/91 (84.6%) vs.18/31(58.1%), P=0.004]. Of the 91 BAV with raphe patients, we found 76 patients (83.5%) with right and left coronary cusps (R-L) fusion, 13 patients (14.3%) with right and non-coronary cusps (R-N) fusion, and 2 patients (1.2%) with left and non-coronary cusps (L-N) fusion. There was a statistical difference in the aortic root diameters between R-L fusion BAV and R-N fusion BAV. The diameter of the distal ascending aorta and proximal aortic arch between R-L and R-N fusion BAV had statistical differences. ConclusionsBAV with raphe is more common than pure BAV and is more often associated with dilatation and aneurysm of the ascending aorta. Otherwise R-L fusion BAV is associated with increased diameters of the aortic root, while R-N fusion BAV is associated with increased diameters of the distal ascending aorta and proximal arch.

    Release date:2016-11-04 06:36 Export PDF Favorites Scan
  • The joint analysis of heart health and mental health based on continual learning

    Cardiovascular diseases and psychological disorders represent two major threats to human physical and mental health. Research on electrocardiogram (ECG) signals offers valuable opportunities to address these issues. However, existing methods are constrained by limitations in understanding ECG features and transferring knowledge across tasks. To address these challenges, this study developed a multi-resolution feature encoding network based on residual networks, which effectively extracted local morphological features and global rhythm features of ECG signals, thereby enhancing feature representation. Furthermore, a model compression-based continual learning method was proposed, enabling the structured transfer of knowledge from simpler tasks to more complex ones, resulting in improved performance in downstream tasks. The multi-resolution learning model demonstrated superior or comparable performance to state-of-the-art algorithms across five datasets, including tasks such as ECG QRS complex detection, arrhythmia classification, and emotion classification. The continual learning method achieved significant improvements over conventional training approaches in cross-domain, cross-task, and incremental data scenarios. These results highlight the potential of the proposed method for effective cross-task knowledge transfer in ECG analysis and offer a new perspective for multi-task learning using ECG signals.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content