ObjectiveTo analyze and summarize the clinical and video EEG (VEEG) characteristics of tuberous sclerosis (TSC) with epilepsy.MethodsClinical data of 30 children with TSC who met the revised diagnostic criteria of TSC in 2012 from Jan. 2016 to May 2019 in Zhengzhou Children’s Hospital were collected, including 29 children with epileptic seizures. The characteristics of skin lesions, imaging, seizures and long-term VEEG were analyzed retrospectively.ResultsThe mean age was (2.88 ± 2.64), 12 males and 18 females, 1 case of lumbar acid as the first symptom, 29 cases with epilepsy as the first symptom, the incidence of epilepsy is high, and the onset age is less than 1 year old; TSC can cause different degrees of cognitive impact; depigmentation or milk coffee spots are the most common skin changes in young children; TSC with infantile spasm has a high incidence; children younger than 10 years old may have lesions of other organs except nervous system lesions. However, the incidence of other organ lesions was relatively low. Most of TSC children with epilepsy were accompanied by abnormal EEG discharge.ConclusionThe clinical characteristics of TSC with epileptic seizures are various, and early diagnosis is of great significance.
ObjectiveTo analyze the effect of mitochondrial ultrastructural changes caused by morphine toxicity on abnormal discharge of cat cerebral cortex, and to explore the possible mechanism of brain function damage caused by morphine dependence.MethodsTwelve domestic cats were divided into control group (3 cats) and morphine exposed group (9 cats) according to the method of random number table. After the model was successfully established by the method of dose increasing, the changes of mitochondrial ultrastructure of cortical neurons were observed under the electron microscope.ResultsElectroencephalogram (EEG) monitoring in morphine exposed group showed that the cortical EEG was widely abnormal, physiological waves were reduced, and abnormal discharges were frequent. And the electron microscopy showed that the number, morphology, internal membrane structure and the inclusion body in the matrix of neurons changed in various aspects. The EEG and electron microscopy of the control group were normal.ConclusionMorphine can damage neurons in the cerebral cortex and lead to abnormal discharge, which is closely related to the ultrastructural changes of neuron mitochondria. The toxicity of morphine mitochondria can be the initial mechanism of energy metabolism dysfunction of brain cells and eventually lead to the disorder of brain electrophysiological function.
Objective To understand the status quo of medical staffs engaged in epilepsy and EEG in Shanxi Province, analyze the existing problems, and summarize the improvement and development direction of epilepsy and EEG in Shanxi Province. Methods A questionnaire survey was conducted among medical staff of epilepsy and electroencephalogram specialty in public hospitals at or above county level in whole province and municipalities. Results ① Generally speaking, there are 17 males and 473 females in this study, with an average age of 38.7 years, the youngest was 23 years-old and the oldest was 70 years-old; ② The regional distribution has a tendency of decrease from Taiyuan in Shanxi Province to the remote areas of southeast, northwest and northwest China, and the epilepsy treatment in some poverty-stricken areas have not even been carried out; ③ The shortest time of working is 3 months and the longest is more than 40 years. The proportion of junior collage students, undergraduates, masters and doctors is 24%, 50%, 25% and 1% respectivel. The professional titles of primary, medium-level, vice-senior and senior are 24%, 39%, 26% and 11% respectively. Conclusion The number of medical workers engaged in EEG specialty in Shanxi Province is insufficient, the regional development is not balanced, and the number of junior and medium-level professional titles is large. We can formulate a mobile policy to encourage experienced medical personnel to communicate with weak areas, so as to improve the overall level of epilepsy and EEG professional development in Shanxi Province.
The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian naïve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.
As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation (P < 0.05), in the left central region after anodal-stimulation (P < 0.05), and in the frontal and right central regions after cathodal-stimulation (P < 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation (P < 0.05), in the left frontal and right central regions after anodal- stimulation (P < 0.05), and in the central and right occipital regions after cathodal-stimulation (P < 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant (P > 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.
ObjectiveThe purpose of the research is to study the distribution and early warning of electroencephalogram (EEG) in acute mountain sickness (AMS). MethodsA total of 280 healthy young men were recruited from September 2016 to October 2016. The basic data were collected by the centralized flow method, the general situation of the division of the investigators after the training, the Lewis Lake score, the computer self-rating anxiety scale and depression scale, and the collection of EEG. Follow up in three months. Results94 of the patients with AMS, morbidity is 33%, 21 (22.34%) of the patients are moderate to severe, 73 (77.66%) are mild, morbidity is 26.67%. The abnormal detection rate of electrogram was 7.9% (22/280), which were mild EEG, normal EEG abnormal rate was 8.6% (16/186), abnormal detection rate of mild AMS was 4.1% (3/73), and the abnormal detection rate was 14.3% (3/21) in the medium / heavy AMS. The latter was significantly different from the previous (P < 0.05). Three months follow-up of this group of patients with 0 case of high altitude disease. Conclusions The EEG in AMS is mainly a rhythm irregular, unstable, poor amplitude modulation; or two hemisphere volatility difference of more than 50% or slightly increased activity. The result is statistically significant, suggesting that EEG distributions has possible early warning of AMS.
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern (wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
There are two modes to display panoramic movies in virtual reality (VR) environment: non-stereoscopic mode (2D) and stereoscopic mode (3D). It has not been fully studied whether there are differences in the activation effect between these two continuous display modes on emotional arousal and what characteristics of the related neural activity are. In this paper, we designed a cognitive psychology experiment in order to compare the effects of VR-2D and VR-3D on emotional arousal by analyzing synchronously collected scalp electroencephalogram signals. We used support vector machine (SVM) to verify the neurophysiological differences between the two modes in VR environment. The results showed that compared with VR-2D films, VR-3D films evoked significantly higher electroencephalogram (EEG) power (mainly reflected in α and β activities). The significantly improved β wave power in VR-3D mode showed that 3D vision brought more intense cortical activity, which might lead to higher arousal. At the same time, the more intense α activity in the occipital region of the brain also suggested that VR-3D films might cause higher visual fatigue. By the means of neurocinematics, this paper demonstrates that EEG activity can well reflect the effects of different vision modes on the characteristics of the viewers’ neural activities. The current study provides theoretical support not only for the future exploration of the image language under the VR perspective, but for future VR film shooting methods and human emotion research.
Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.
The causes of mental disorders are complex, and early recognition and early intervention are recognized as effective way to avoid irreversible brain damage over time. The existing computer-aided recognition methods mostly focus on multimodal data fusion, ignoring the asynchronous acquisition problem of multimodal data. For this reason, this paper proposes a framework of mental disorder recognition based on visibility graph (VG) to solve the problem of asynchronous data acquisition. First, time series electroencephalograms (EEG) data are mapped to spatial visibility graph. Then, an improved auto regressive model is used to accurately calculate the temporal EEG data features, and reasonably select the spatial metric features by analyzing the spatiotemporal mapping relationship. Finally, on the basis of spatiotemporal information complementarity, different contribution coefficients are assigned to each spatiotemporal feature and to explore the maximum potential of feature so as to make decisions. The results of controlled experiments show that the method in this paper can effectively improve the recognition accuracy of mental disorders. Taking Alzheimer's disease and depression as examples, the highest recognition rates are 93.73% and 90.35%, respectively. In summary, the results of this paper provide an effective computer-aided tool for rapid clinical diagnosis of mental disorders.