The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.