Objective To investigate the inhibitory effects of fms-like typrosine kinase receptor sFlt-1 on retinal neovascularization (RNV).Methods Recombinant lentivirus sFlt-1(2-3)and sFlt-1(2-4)expressing the sFlt-1 (2-3) and (2-4) immunoglobulinlike regions of sFlt-1 were constructed. 96 seven-day-old C57/6J mice were randomly divided into 4 groups with 24 mice in each group. Group 1: normal control; group 2: experimental control; group 3: sFlt-1(2-3); group 4: sFlt-1(2-4).The mice in group 2-4 were exposed to hyperoxia with (75plusmn;2)% O2 for 5 days and then returned to normoxia with 21% O2;the mice received an intravitreal injection with 1 mu;l virus of empty vector, sFlt-1(2-3),or sFlt-1(2-4),respectively. Five days later, all mice underwent perfusion fluorecein angiography and retinal wholemont was made to observe the changes of retinal vessels; retinal sections were stained by hematoxylin and eosin and RNV endothelium cell nucleus were counted; vascular endothelial growth factor(VEGF) and VEGF receptor-2 (KDR/Flk-1) protein were measured by Western blot.Results Seventeen days after birth, the retinal area of fluorescein leakage and RNV, RNV nucleus which breaking through inner limiting membrane in group 3 and 4 were smaller or less than that in group 2(P<0.01); while VEGF protein didnprime;t changed much (P>0.05)the expression of KDR/Flk-1 decreased significantly (P<0.01). Conclusion sFlt-1(2-3)and sFlt-1(2-4)can inhibit the formation of oxygen-induced RNV,the former virus has a better effect.
ObjectiveTo investigate the expression and mechanism of miR-1470 in plasma of diabetic retinopathy (DR) patients.MethodsThirty patients with DR (DR group), 30 patients with diabetes (DM group) and 30 normal healthy subjects (normal group) were enrolled in the study. Three groups of subjects were taken 5 ml of venous blood, and total plasma RNA was extracted and purified. The differentially expressed miRNAs in the plasma of DR patients were screened by gene chip, and the results of gene chip detection were verified by reverse transcription polymerase chain reaction (RT-PCR). Bioinformatics was used to predict potential target genes for miRNA regulation, and miR-1470 and its target gene epidermal growth factor receptor (EGFR) were screened. Human retinal microvascular endothelial cells (hREC) were divided into normal group (sugar concentration 5.5 mmol/L) and high glucose group (sugar concentration 25.0 mmol/L). hREC was transfected into miR-1470 mimics to establish a miR-1470 high expression cell model, which was divided into blank control group, high expression group and negative control group. The expression of miR-1470 was detected by RT-PCR. The expression of EGFR protein was detected by Western blot. The measurement data of the two groups were compared using the independent sample t test. The comparison of the measurement data between the two groups was analyzed by ANOVA. The comparison between the measurement data of the groups was compared by multiple comparisons.ResultsThe results of RT-PCR were consistent with those of the gene chip. The expression of miR-1470 in the plasma of the DR group, the DM group and the normal group was statistically significant (F=63.486, P=0.049). Compared with the DM group and the normal group, the expression of miR-1470 in the DR group was significantly decreased, and the difference was statistically significant (q=111.2, 73.9; P<0.05). The expression of miR-1470 in hREC in the high glucose group was significantly lower than that in the normal group (t=42.082, P=0.015). The expression of EGFR protein in hREC of high glucose group was significantly higher than that of normal group (t=−39.939, P=0.016). The expression of miR-1470 (F=637.069, P=0.000) and EGFR (F=122.908, P=0.000) protein expression in hREC of blank control group, negative control group and high expression group were statistically significant . Compared with the blank control group and the negative control group, the expression of miR-1470 in hREC of high expression group was significantly increased (q=329.7, 328.8; P<0.05), and the expression of EGFR protein was significantly decreased (q=242.5, 234.6; P<0.05). There was no significant difference in the expression of miR-1470 and EGFR protein in hREC between the negative control group and the blank control group (q=1.5, 7.9; P>0.05).ConclusionThe expression of miR-1470 in the plasma of patients with DR is significantly down-regulated, and the increase of EGFR expression may be related to it.
Objective To investigate the enhancing effect of ultrasound microbubbles on transfection of recombinant adenoassociated virus (rAAV) mediated green fluorecent protein (EGFP) gene into retinal ganglion cells (RGC) in vivo.Methods A total of 40 adult Sprague-Dawley (SD) rats were divided into four groups randomly (group A,B,C,D) with 10 rats in each. Group A was the normal control, in which the rats underwent intravitreal injection with 5 mu;l phosphate buffered solution. The rats in group B underwent intravitreal injection with 5 mu;l recombinant adenoassociated virus encoding EGFP gene (rAAV2-EGFP). The rats in group C underwent ultrasound irradiation on eyes right after intravitreal injection with 5 mu;l rAAV2-EGFP; The ultrasound irradiation was performed on the rats in group D right after intravitreal injection with the mixture solution of microbubbles and rAAV2-EGFP ultrasound. After 21 days, RGC were labeled retogradely with fluogold. Seven days after labeling, the retinal flatmounts and frozen sections were made from five rats in each group. Expression of EGFP reporter gene was observed by laser scanning confocal microscope and evaluated via average optical intensity (AOD) and RGC transfection rate. Labeled RGC were counted to evaluate the adverse effects.Results Green fluorescence can be observed exactly in labeled RGC in B,C,and D groups. The AOD and transfection rate in group D was (95.02plusmn;7.25)% and(20.10plusmn;0.74)% , respectively; which were higher than those in group B and C (F=25.970,25.799;P<0.01). The difference of the number of RGC among the four groups was not significant(F=0.877,P>0.05). Conclusion Under the condition of low frequency and with certain energy, ultrasoundmediated microbubble destruction can effectively and safely enhance rAAV delivery to RGC in rats.
Objective To investigate the inhibitory effects of 15-lipoxygenase-1 (15-LOX-1) gene transfer on oxygen-induced retinal neovascularization in mice. Methods Ninety-six 7-day-old C57BL/6J mice were randomly divided into normal control group, oxygeninduced retinopathy (OIR) model group, gene treated group and empty vector group. The mice with their mothers were kept in (75plusmn;2) % 02 environment for 5 days and then returned to normoxia for 5 days to establish the OIR model. At postnatal day 12, the gene treated group received intravitreous injection of recombinant adenovirus (Ad) vector containing both enhanced green fluorescent protein (EGFP) and mouse 15-LOX-1 genes (Ad-15-LOX-1-EGFP) at 1 l, while the empty vector group received the same volume of recombinant Ad vector containing EGFP (Ad-EGFP). The expression of EGFP was observed on flat-mounted retina by fluorescence microscopy 2 days after intravitreous injection of Ad-15-LOX-1-EGFP. At postnatal day 17, the efficacy of 15-LOX-1 gene transfer on retinal tissue was detected by immunofluorescence staining, real-time polymerase chain reaction and Western blot. The changes of retinal vessels, relative retinal non-perfusion and neovascularization areas were evaluated by fluorescein isothiocyanate-dextran fluorescein angiography on flatmounted retina. The number of endothelium cell nuclei breaking through the inner limiting membrane (ILM) was counted on hematoxylin and eosin-stained retinal section. Results Two days after intravitreous injection of Ad-15-LOX-1-EGFP, the expression of EGFP had been seen by fluorescence microscopy on Flat-mounted retina. Immunofluorescence staining of retinal section revealed that 15-LOX-1 expression was primarily in the outer plexiform layer, inner nuclear layer and ganglion cell layer of retina. The 15-LOX-1 protein and mRNA expression levels were higher in gene treated group than those in OIR model group and empty vector group (tprotein=22.74 and 24.13 respectively.tmRNA=12.51 and 13.40 respectively; P<0.01). The relative retinal non-perfusion and neovascularization areas were significantly smaller in gene treated group than those in OIR model group and empty vector group (tnon-perfusion=16.22 and 14.31 respectively.tneovascularization=9.97 and 9.07 respectively; P<0.01), and the number of endothelium cell nuclei breaking through the ILM in gene treated group was obviously lower than the other two groups (t=14.25 and 11.62 respectively,P<0.01). Conclusion 15-LOX-1 gene transfer can decrease the oxygen-induced retinal non-perfusion areas and inhibit the retinal neovascularization in mice.
ObjectiveTo investigate the expression of miR-195 and the underlying molecular mechanisms of miR-195 regulating HMGB1 in diabetic retinopathy (DR). MethodsExtract 5 ml venous blood from DR patients, diabetes mellitus (DM) patients and normal subjects, then extract and perificate plasma total RNA. MicroRNA array and real time polymerase chain reaction (RT-PCR) was used to screen out miRNAs which were expressed with significant differences in the serum of patients with DR. Bioinformatics was employed to predict the miR-195 related to high mobility group box 1 (HMGB1) regulation. Next, miR-195 was down-regulated or up-regulated in umbilical vein endothelial cells through transfection of miR-195 inhibitor and miR-29b mimics respectively.Then we analyzed expression of HMGB1 mRNA and protein by RT-PCR and Western blot. ResultsMicroRNA array results showed the expression of miR-195 in DR group is decreased by 8.34 times and 11.47 times compared with DM group and the normal group. RT-PCR verification results conforms to the microRNA array results. Compared with the DM group (F=0.034, t=8.057) and the normal group (F=0.370, t=9.522), the expression of miR-195 in DR group were significantly reduced, the differences were statistically significant (P < 0.05). RT-PCR showed that the expression of HMGB1 mRNA was significantly decreased in up-regulation group, compared with blank (F=0.023, t=11.287) and negative control group (F=0.365, t=7.471), the difference was statistically significant (P < 0.05). The expression of HMGB1 mRNA was significantly increased in down-regulation group, compared with blank (F=0.053, t=10.871) and negative control group (F=0.492, t=6.883), the difference was statistically significant (P < 0.05). Western blot showed that the expression of HMGB1 protein was significantly decreased in up-regulation group, compared with blank (F=0.021, t=8.820) and negative control group (F=0.039, t=7.401), the difference was statistically significant (P < 0.05); and significantly increased in down-regulation group, compared with blank (F=0.186, t=10.092) and negative control group (F=0.017, t=12.923), the difference was statistically significant (P < 0.05). ConclusionMiR-195 can inhibit the expression of HMGB1, reduce the inflammation and angiogenesis, thereby delaying or inhibiting the occurrence and development of DR.
Objective To observe the effect of Twist gene interference on the migration and pAkt protein expression of Rhesus retinal vascular endothelial cell line. Methods The Rhesus retinal vascular endothelial cells (RF/6A) were divided into Twist interference plasmid group, negative control group, and phosphate buffered solution (PBS) group; plasmid vectors were transfected via liposome gene transfection method. Migrated endothelial cells was detected and counted by Transwell chamber assay. Matrigel was used in endothelialcell tube formation; the inhibitory effect of Twist gene interference on endothelial cell tube formation was observed.The effect of Twist gene interference on the expression of pAkt protein in RF/6Acells was measured by Western blot. Results The number of migrated endothelial cells in Twist interference plasmid group was lower than that in the negative control and PBS group (F=23.786,P=0.000).The number of endothelial cell tubes in Twist interference plasmid group was apparently less than that in the negative control and PBS gorup (F=7.159,P=0.014). The expression of pAkt protein in Twist interference plasmid group decreased markedly.Conclusion Twist gene interference can suppress the migration of retinal endothelial cells via inhibiting the expression of pAkt protein.
Objective To investigate the effects of recombinant adeno-associated virus type-2 (rAAV2) mediated delivery of pigment epitheliumderived factor (PEDF) on oxygen-induced retinal neovascularization (OIRNV) in mice. Methods A total of 22 C57/BL6 mice at the age of 3 days received intravitreal injections of 1 mu;l rAAV2-PEDF and rAAV2EGFP into the left eyes (experimental group) and the right eyes (control group). All mice were put into the oxygen box right after the injection to induce the OIRNV model.4 mice were sacrificed and PEDF protein in retina was measured by western blot at postnatal days 13 (P13). Twelve mice underwent retinal angiography with high molecular weight fluoresceindextran, and another 6 mice were sacrificed for retinal lectin immunohistochemistry staining at P17. Absolute and relative nonperfusion areas of retinal neovascularization were analyzed by Image-Pro Plus 5.1 software. Results The expression level of PEDF protein was higher in the experimental group than that in the control group.The absolute nonperfusion area was (0.96plusmn;0.22) mm2 in the experimental group and (1.96plusmn;0.34) mm2 in the control group; the difference between the two groups was significant(t=-8.554, P<0.01). The relative nonperfusion area was (8.64plusmn;1.52)% in the experimental group and (17.27plusmn;2.98)% in the control group with a significant difference between the two groups (t=-8.97, P<0.01).The absolute area of retinal neovascularization was (0.37plusmn;0.11) mm2 in the experimental group which was obviously higher than (1.26plusmn;0.38) mm2 in the control group (t=-7.8, P<0.01); the relative areas in experimental and control groups was (3.96plusmn;0.66)% and (11.45plusmn;2.06)%, respectively, whose difference is apparently(t=-8.51, P<0.01).The areas of retina neovascularization were (0.11plusmn;0.003) mm2 and (0.41plusmn;0.02) mm2 in the experimental and control groups, respectively, and the difference between the two groups was significant(t=-5.14, P<0.01).Conclusions PEDF protein can stably express in the mice retina after rAAV2-PEDF transfetion. rAAV2-PEDF can decrease the retinal non-perfusion areas and inhibit the retinal neovascularization in OIRNV mice.
Objective To explore and evaluate the protective effects of soluble fms-like tyrosine kinase recptor-1(sFlt-1) gene 2-3 and 2-4 transcellular region on retinal vascular leakage and phosphatidyl inositol-3 kinase (PI3K)/Akt pathway under hypoxia and/or hyperglycemia. Methods The plasmids pcDNA3.1-EGFP/sFlt-1(2-3) and pcDNA3.1-EGFP/sFlt-1(2-4) were constructed.. Two of these plasmids with carboxy methylation glucan (CMD) magnetic particles were transfected into human umbilical vein endothelial cells (HUVEC), which were cultured under hypoxia and/or hyperglycemia. The blood retinal barrier was evaluated by Evans blue permeation (EBP). Then the expression of p-Akt mRNA and protein were detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blot separately. Results In the diabetic rabbits, The blood retinal barrier breakdown was detected by the retinal vascular leakage of EBP. The expression of p-Akt mRNA and protein in hypoxia and hyperglycemia groups were also obviously increased. These changes were largely prevented by transfection the plasmids pcDNA3.1-EGFP/sFlt-1(2-3) and pcDNA3.1-EGFP/sFlt-1(2-4) (P<0.01 in both groups). Conclusion Both sFlt-1(2-3) and sFlt-1(2-4) can make the retinal blood vessels less leaky and may be beneficial in preventing vision loss from diabetic retinopathy.
Objective To compare the transfection effects on soluble fms-like tyrosine kinase receptor-1 (sFlt-1) gene (2-4 transcellular region) mediated by carboxymethylated dextran coated nanoparticle and lipofectamineTM2000.Methods The plasmid pcDNA3.1-EGFP/sFlt-1(2-4) was constructed and assessed by enzyme cut, electrophoresis, and genetic sequencing. Three groups were divided: nanoparticle group, lipofectamine group, and non-transfected group. Twenty-four and 48 hours after the transfection, the distribution of cellular green fluorescence was oberved under the inverted phase contrast fluorescence microscope; the expression rate of green fluorescence was measured by flow cytometry; the expression of sFlt-1(2-4)mRNA and the protein was detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blot; the growth of the cells was observed by methyl thiazolyl tetrazolium (MTT) colorimetry and the relative growth rate (RGR) of the cells in each group was calculated; the cellular apoptosis in each group was detected by Hoechst staining.Results The sequence of sFlt-1(2-4) gene was equal to 915 base pair (bp).The transfection rate was 45% in nanoparticle group and 21% in lipofectamine group; the difference between the two groups was significant (t=2.541,Plt;0.05). Forty-eight hours after the transfection, the expression of sFlt-1(2-4)mRNA and protein was obviously higher in nanoparticle group than that in lipofectamine group (t=2.454,2.398;Plt;0.05) . Twenty-four and 48 hours after the transfection,the difference of RGR of the cells between nanoparticle and non-transfected group was not significant(t=1.436,Pgt;0.05); the RGR in lipofectamine group differed much from that in non-transfected and nanoparticle group (t=2.412,2.545; Plt;0.05) ; the difference of cellular apoptosis was not significant between nanoparticle and nontransfected group (t=1.436,Pgt;0.05), but significant between nanoparticle and lipofectamine group (t=2.236,Plt;0.05). Conclusion The transfection rate of sFlt-1(2-4) mediated by carboxymethylated dextran coated nanoparticle was higher than that mediated by lipofectamineTM2000.
Objective To observe the inhibitory effects of gene transfer of canstatin on retinal neovascularization in mice. Methods Fifty-six 7-day-old C57BL/6J mice were randomly divided into control group,oxygen-induced retinopathy (OIR) group, empty vector group and treated group,14 mices in each group. Except for the control group,the mice in the other groups were exposed to (75plusmn;2)% oxygen for 5 days and then back to the normal air to establish the model of OIR. On postnatal 12 day, the treated group was received intravitreal injection of canstatin pCMV-HA, while the empty vector group was received the same volume of empty plasmid.The changes of retinal vessels were observed by Evans blue angiography on postnatal 17 day. With parafin section which stained by hematoxylin and eosin, then the number of endotheliocyte nuclei breaking throuhgh the internal limiting membrane(ILM) was observed and counted by optical microscope.Results Retinal blood vessels distributed regularly in treated group compared with OIR group and empty vector group.The differences of the number of endotheliocyte nuclei breaking throuhgh ILM in treated group was significant compared with the other two groups(F=39.006,Plt;0.001).Conclusion The canstatin pCMV-HA can effectively inhibit the retinalneovascularization in OIR.