Objective To observe the protective role of the ectogenesis zinc on the cells in rat flap with ischemia reperfusion injury and study the mechanisms. Methods A right low abdominal island flap was created in Wistar rats. Fortyeight rats were randomly divded into 3 groups (n=16):the control group, the ischemia reperfusion group and adding zinc ischemia reperfusion group.The content of malondialdehyde(MDA) and the activity of myeloperoxidase(MPO) were measured by thiobarbituric acid methods and colorimetry. The location of expression of MT was observed,and the image analysis was performed. The quantity of MT was represented by the integratial optical density. The ultrastructure changes of skin flap with ischemia reperfusion injury and the flap viability were observed. Results In the ischemia reperfusion injury flaps, the content of MDA and MPO show no statistically significant difference among the control group,IR group and the adding-zinc-IR group (P>0.05). Compared with the control group at 1 h and 24 h of reperfusion, the level of MDA increased 62.2% and 136.4%(P<0.01) in the IR group, which increased 11.3% and 33.2%(P<0.01) in the adding-zinc-IR group. The activity of MPO increased 238.4% and 503.4%(P<0.01)in the IR group when compared with the control group, and increased 17.9%and 24.1%(P<0.05) when compared with the adding-zinc-IR group. In the ischemia reperfusion injury falps, the content of MT in the control group and the IR group is too minimal to measure. While the content ofMT in the adding-zinc-IR group is 45.30±7.60. At 1 h and 24 h of reperfusiion, the content of MT in the adding-zinc-IR group increased 41.5% and 44.9% (P<0.01) compared with the IR group, and increased 119.9% and 234.6% (P<0.01) compared with the control group. The flap viability is 100% in the control group, 19.65%±4.38% in the IR group, and 24.99%±5.12% in the adding-zinc-IR group, which increased 27.2% (P<0.05) compared with IR group. Conclusion Many kinds of cells in skin flap with ischemiareperfusion injury can be protected by ectogenesis zinc and the flap viability increases significantly.
ObjectiveTo introduce the relationship between the apoptosis hepatocyte and its genic mediation and the ischemia of portal vein. MethodsThe combination of related literatures and our research findings were made.ResultsPortal vein ischemia may induced hepatocyte apoptosis, p53 and bcl2 gene alternatively adjust hepatocyte apoptosis. Expression of p53 gene is enhanced in hepatic tissue when hepatocyte apoptosis is not obvious, but after 24-72 h of portal vein ischemia, when hepatocyte apoptosis is obvious, enhanced expression of p53 gene or reduced expression of bcl2 gene occur. There exists close relationship between portal vein ischemia and hepatocyte apoptosis. Conclusion Apoptosis hepatocyte is involved in organic atrophy after ischemia of portal vein, and p53 and bcl2 gene alternatively adjust hepatocyte apoptosis. At present, the mechanism of apoptosis of hepatocyte induced by ischemia of portal vein is not clear, which needs further study.
Objective To analyze the protective effects of heat-shock response on the retinae of the rats after retinal ischemic reperfusion injury.Method Twenty Wistar rats (20 eyes) were divided into 4 groups: intracameral perfusion group (group P), intracameral perfusion after quercetin injection group (group P+Q), intracameral perfusion after heat shock group (group P+H), and in tracameral perfusion after quercetin injection and heat shock group (group P+Q+H ). According to the standard program established by International Society for Clinical Visual Electrophysiology, we recorded the results of the dark-adapted electroretinogram (D-ERG ),oscillatory potentials (OPs),and light-adapted ERG (L-ERG) of the rats with intraocular hypertension after induced by heat shock response. The expressions of HSP 70 of the rats in all groups were observed by Western blotting.Results The expression of HSP 70 of the rats in group P+H was the highest in all groups, but the expressions of HSP70 in group P+Q and P+Q+H were inhibited significantly. The amplitudes of a and b wave of ERG and O2 wave of OPs decreased, and the delitescence of them were delayed significantly in rats after intracameral perfusion. The amplitude of b wave of D-ERG and O2 wave of OPs in group P+H were higher than which in group P. Zero hour after perfusion, the amplitudes of all waves in group P+H increased significantly (Plt;0.05). Twenty-four hours after perfusion, the retinal functional resumption of the rats in group P+H was better than which in group P. In group P+Q and P+Q+H, the delitescences of all waves of ERG and O2 wave of OPs were the longest and the amplitudes were the lowest, and some waves even disappeared.Conclusions The heat-shock response may improve the recovery ability of the retinal cells after injury of ischemic reperfusion.(Chin J Ocul Fundus Dis,2003,19:117-120)
Objective To summarize the function of Kupffer cell for the ischemia reperfusion injury after liver’s transplatation. Methods The literatures which about the function of Kupffer cell for the ischemia reperfusion injury after liver’s transplatation were reviewed. Results Kupffer cells are the resident macrophages of the liver, which can be activated to generate a range of inflammatory mediators, including cytokines, reactive oxygen intermediates, chemokines, and other factors to startup the ischemia reperfusion injury (IRI), and to cause the liver graft dysfunction. On the other hand, Kupffer cells can protect the ischemia reperfusion injury by release NO and HO-1. The CO, which is the byproduct of heme degradation by the heme oxygenases (HO-1),has the same function for IRI. Conclusions The Kupffer cells have bidirectional function for the ischemia reperfusion injury of liver’s transpatation. Thus, how to decrease the harmful factors and up-regulate the beneficial substances by Kupffer cells will be the key points in preventing IRI after liver transplantation in future.
To investigate the role of platelet-activating factor (PAF), neutrophils in ischemia-reperfusion-induced liver injury and their possible mechanism, PAF and the degree of neutrophil infiltration in liver tissue and the preventive effects of PAF antagonist kadsurenone were evaluated in this study by means of a partial liver ischemia model, in which it was induced by clamping only left and median lobes of the liver without causing intestinal congestion. The present study was undertaken to find out the mechanism of liver ischemia-reperfusion injury and preventive effect of kadsurenone. The results indicate that in early stage of reperfusion liver injury possibly caused by the generation of free radicals, declined of autioxidant defence and increased Ca2+ influx, and in the later stage of reperfusion injury was mainly mediated by accumulation of PAF in the liver, which elicits the release of polymorphonuclear leukocytes induced toxical free radical, endothelial damage, microcirculatory collapse. The authors conclude that the effectiveness of antagonist kadsurenone in protecting against ischemiareperfusioninduced liver injury is due not only to their action in preventing the direct effects of PAF, but also to their ability to inhibit both PAF priming and PAF dependent feedback processes, thus preventing escalation of auto generated inflammatory damage.
Objective To investigate the effects of repeated shortischemia training on flap survival area, vascular endothelial growth factor and the microvascularsel density. Methods Seventy-two rabbits were divided into:the experimental group(n=64), the skin flaps were constructed in two sides of back, one side flap were given ischemia training for 15 minutes and 8 times one day at the pedicles from the 1st to 8th day after operation (group A), the other side flap was served as a control (group B), the corresponding site was only marked as a blank control group (group C).Then, 8 pedicles of group A and group Bwere isolated every day. The surviving area of all skin flaps were calculated on the5th day after isolating operation. The vascular endothelial growth factor(VEGF)and microvessel density(MVD) of the 3 groups were checked with immunohistologochemical staining. Results After the operation, all animalswere survival with normal vitality.The survival flap area of group A were significant more than that of group B after 3 days(Plt;0.05).The expressions of VEGF and MVD of group A and group B were higher than group C. The expression of VEGF of group A was significantly higher than that of group B(Plt;0.01). The counting of MVD of group A was also significantly higher than that of group B(Plt;0.05). There was positive correlation between flap survival area and MVD in group A. The relation of time point was n and n 2 respectively,correlation coefficient was 0.850. As well as MVD and VEGF were positive correlation,correlation coefficient was 0.801. Conclusion Early repeated shortischemia training can increase flap survival area, the mechanism maybe involve the increased expression of VEGF, which can increased skin flap microvascular density.
Objective To investigate the effect of cold ischemia on the development of transplant arteriosclerosis (TA) in rat aortic isografts. Methods Aorta grafts from SD and Wister rats were stored in a cold perfusion solution for 0.5 hours and 4 hours respectively before being orthotopically transplanted to Wister recipients. After observation times ranging from 15 to 60 days, the grafts were examined by using histological and electron microscopy techniques. Regional changes in the lumen, intima and media layers were measured by using an image analysis system. Results Partial intima thickings were showed in control isografts at 60 day posttransplantation. Pronounced intima thickings were seen in experimental isografts and control allografts at the same time. The thicking neointimas consist mainly of monocyte/macrophage and smooth muscle cells (SMC). The broken interior elastic lamina (IEL) and necrosis SMC in media were detected in allogenic grafts. Conclusion The damage due to prolonged cold ischemia time is sufficient to cause pronouced graft arteriosclerosis.
Objective To observe the protective effects of diazoxide-preconditioning on myocardial ischemiareperfusion injury of rats and discuss its possible mechanisms. Methods Fourteen healthy SD rats were randomly divided into two groups(7 each group),In diazoxide-preconditioning group diazoxide was injected with the dosage of 12.5mg/kg through the vein,and in control group the media with the same amount was only given before ischemia. The left anterior descending branch was ligated for 2 hours. The heart was quickly excised after 2 hours reperfusion to be used for measurement of the quantity of malondialdehyde(MDA), the activity of superoxide dismutase (SOD), the size of myocardial infarct area, and the cell apoptosis and ultrastructure in ischemic area. Results Compared with the control group, the quantity of MDA,the percentage of the weight of myocardial infarct area/ischemic area, and the rate of cell apoptosis in the diazoxide-preconditioning group were greatly reduced (P〈0.05, 0. 01). The damage of cell uhrastructure was obviously alleviated,Conclusion Diazoxide-preconditioning provides evident cardioprotective effect on the myocardial ischemia-reperfusion injury of rats.
Objective To investigate the pathological changes in the neuromuscular junction during ischemiareperfusion(IR) in the skeletal muscle. Methods Forty-eight healthy adult Wistar rats (24 male, 24 female) were equally randomised into the following 6 groups: Group A (control group): no ischemiareperfusion; Group B: ischemia by clamping the blood vessels of the right hindlimb for 3 hours; Group C: ischemia by clamping for 4.5 hours;Group D: ischemia by the clamping for 4.5 hours followed by reperfusion for 1.5hours; Group E: ischemia for 4.5 hours followed by reperfusion for 24 hours; and Group F: ischemia for 4.5 hours followed by reperfusion for 2 weeks. Then, the medial head of the gastrocnemius muscle flap model was applied to the right hindlimb of each rat. The medial head of the gastrocnemius muscle was isolated completely,leaving only the major vascular pedicle, nerve and tendons intact.The proximal and distal ends (tendons) were ligated while the vessel pedicle was clamped. And then, Parameters of the muscle (performance,contraction index,colour,edema,bleeding) were observed. The muscle harvested was stained with gold chloride(AuCl3) and the enzymhistochemistry assay (succinate dehydrogenase combined with acetylcholine esterase) was performed. Morphology and configuration of the neuromuscular junction were observed during the ischemiareperfusion injury by means of the AuCl-3 staining. The result of the enzymhistochemical reactions was quantitatively analyzed with the computer imageanalysis system. And then, additional 5 rats were prepared for 3 different models identical with those in Groups A, C and E separately. The specimens were harvested from each rat and were stained with HE and AuCl-3, and they were examined under the light microscope. Results During the period of ischemia, the skeletal muscle of Group B showed the colour of purple and edema.The colour and edema became worse in Group ,while dysfunction of elasticity and contraction appeared obviously with plenty of dark red hemorrhagic effusion at the same time.After reperfusion,the color and edema of muscle in Group D became improved while the elasticity and function of contraction was not improved. Hemorrhagic effusion of Group D turned clearer and less than Group C.Group E was similar to Group D in these aspects of muscle except for much less hemorrhagic effusion. Skeletal muscle in Group F showed colour of red alternating with white, adhesion,contracture of muscle, exposure of necrotic yellow tissue and almost lost all its functions. The AuCl3 staining showed that during IR, necrosis of the myocytes was followed by degeneration of their neuromuscular junctions, and finally the nerve fibers attached to these neuromuscular junctions were disrupted like the withering of leaves. The enzymhistochemistry assay showed thatthere was no significant difference in the level of acetylcholine esterase between the ischemic group (Groups B and C) and the control group (Group A) (Pgt;0.05). However, the level of acetylcholine esterase in all the reperfused groups (Groups D, E and F) decreased significantly when compared with the control group(Group A)and the ischemic groups (Groups B and C) (Plt;0.01). Conclusion The distribution of the nerve fibers and the neuromuscular junctions in the mass of the muscles is almost like the shape of a tree. The neuromuscular junction seems to be more tolerant for ischemia than the myocyte. Survival ofthe neuromuscular junction depends on its myocytes alive. Therefore, an ischemiareperfusion injury will not be controlled unless an extensive debridement of the necrotic muscle is performed.
Objective To study the protective effects of ischemic preconditioning(IP) duration against ischemic reperfusion injury of skeletal muscle. Methods Thirty-six Wister rats were made amputation-like models, which underwent temporary amputation at the level of the femur, excluding the femoral vessels. They were divided into 6 groups(n=6) according to different treatments before ischemiareperfusion: group A(4 hours of ischemiareperfusion); groups B, C, D, E(5, 10,15, 20 minutes of ischemia and 5, 10, 15, 20 minutes of reperfusion respectively, for 3 cycles, 4 hours ischemiareperfusion ); group F (no ischemia-reperfusion). The malondialdehyde(MDA), the extent of edema and necrosis of skeletal muscle were measured to observe protective effects of different ischemic preconditioning duration. Results Five minutes of ischemic preconditioning(IP5)could protect skeletal muscle of ischaemia against necrosis and the survival area of the muscle was 82.47%.The effects of IP10 and IP 15 were significantly superior to that of IP5 and the survival areas of the muscle were 89.03% and 89.49%. The effect of IP20(78.27%) was significantly inferior to that IP5. IP5 could reduce edema of skeletal muscle, the effect of IP10 was significantly superior to that of IP5. IP5, IP 10,and IP 15 could decrease the level of MDA, but IP20 did not decrease it. Conclusion The trend of protective effect of IP on ischemia-reperfusion injury of themuscle in rats first rise to the peak and then go down,10minutes ofIPis optimal.