west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LIAN Xiaojie" 3 results
  • Progress in preparation and application of sodium alginate microspheres

    Sodium alginate (SA) is a kind of natural polymer material extracted from kelp, which has excellent biocompatibility, non-toxicity, biodegradability and abundant storage capacity. The formation condition of sodium alginate gel is mild, effectively avoiding the inactivation of active substances. After a variety of preparation methods, sodium alginate microspheres are widely used in the fields of biomaterials and tissue engineering. This paper reviewed the common methods of preparing alginate microspheres, including extrusion, emulsification, electrostatic spraying, spray drying and coaxial airflow, and discussed their applications in biomedical fields such as bone repair, hemostasis and drug delivery.

    Release date: Export PDF Favorites Scan
  • Three-dimensional printed scaffolds with sodium alginate/chitosan/mineralized collagen for promoting osteogenic differentiation

    The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.

    Release date: Export PDF Favorites Scan
  • Progress in antibacterial coatings of titanium implants surfaces

    In recent years, bone implant materials such as titanium and titanium alloys have been widely used in the biomedical field due to their excellent mechanical properties and good biocompatibility. However, in clinical practice, bacterial adhesion to the material surface and postoperative infection issues may lead to implantation failure. Based on the antibacterial mechanism, this review elaborated on the antibacterial surface design of titanium implants from the aspects of anti-bacterial adhesion, contact sterilization and photocontrol sterilization. Surface modification of titanium or titanium-based alloy implants with different techniques can inhibit bacteria and promote osseointegration. Thus, the application range of multifunctional titanium-based implants in the field of orthopedics will be expanded.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content