west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Mesenchymal stem cell" 83 results
  • IN VITRO DIFFERENTIATION OF RAT MESENCHYMAL STEM CELLS INTO SKELETAL MUSCLE CELLS INDUCED BY MYOBLAST DIFFERENTIATION FACTOR AND 5-AZACYTIDINE

    Objective To explore the in vitrodifferentiation of the rat mesenchymal stem cells (MSCs ) into the skeletal muscle cells induced by the myoblast differentiation factor (MyoD) and 5-azacytidine. Methods The MSCs were taken from the rat bone marrow and the suspension of MSCs was made and cultured in the homeothermia incubator which contained 5% CO2at 37℃. The cells were observed under the inverted phase contrast microscope daily. The cells spreading all the bottom of the culture bottle were defined as onepassage. The differentiation of the 3rd passage of MSCs was induced by the combination of 5-azacytidine, MyoD, transforming growth factor β1, and the insulin like growth factor 1. Nine days after the induction, the induced MSCs were collected, which were analyzed with the MTT chromatometry, theflow cytometry, and the immunohistochemistry. Results The primarily cultured MSCs grew as a colony on the walls of the culture bottle; after the culture for 5-7 days, the cells were shaped like the fibroblasts, the big flat polygonal cells, the medium sized polygonal cells, and the small triangle cells; after the culture for 12 days, the cells were found to be fused, spreadingall over the bottle bottom, but MSCs were unchanged too much in shape. After the induction by 5-azacytidine, some of the cells died, and the cells grew slowly. However, after the culture for 7 days, the cells grew remarkably, the cell volume increased gradually in a form of ellipse, fusiform or irregularity. After theculture for 14 days, the proliferated fusiform cells began to increase in a great amount. After the culture for 18-22 days, the myotubes increased in number and volume, with the nucleus increased in number, and the newly formed myotubes and the fusiform myoblst grew parallelly and separately. The immunohistochemistry for MSCs revealed that CD44 was positive in reaction, with the cytoplasm ina form of brown granules. And the nucleus had an obvious border,and CD34 was negative. The induced MSCs were found to be positive for desmin and specific myoglobulin of the skeletal muscle. The flow cytometry showed that most of the MSCs and the induced MSCs were in the stages of G0/G1,accounting for 79.4% and 62.9%,respectively; however, the cells in the stages of G2/S accounted for 20.6% and 36.1%. The growth curve was drawn based on MTT,which showed that MSCs weregreater in the growth speed than the induced MSCs. The two kinds of cells did not reach the platform stage,having a tendency to continuously proliferate.ConclusionIn vitro,the rat MSCs can be differentiated into the skeletal muscle cells with an induction by MyoD and 5-azacytidine, with a positive reaction for the desmin and the myoglobulin of the skeletal muscle. After the induction, the proliferation stage of MSCs can be increased, with a higher degree of the differentiation into the skeletal muscle.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Therapeutic Progress of Congestive Heart Failure Treated with Mesenchymal Stem Cells

    Congestive heart failure is a complication of myocardial infarction threatening human health. Although the pharmacotherapy is effective, it is still a worldwide challenge to thoroughly repair the injured myocardium induced by myocardial infarction. It has been demonstrated that mesenchymal stem cells (MSCs) can repair infarcted myocardium. Much evidence shows that MSCs can generate new myocardial cells in both human and animals' hearts. This review aims at discussing the therapeutic progress of the congestive heart failure treated with MSCs.

    Release date:2016-11-04 06:36 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF OSTEOGENIC INDUCTION OF FETAL MOUSE LIVER MESENCHYMAL STEMCELLS IN VITRO AND THEIR BIOLOGIC ATTACHMENT PROPERTIES TO TRUE BONE CERAMIC

    Objective To study the culture and purification of the fetal mouse liver mesenchymal stem cells(MSCs) in vitro and to investigate their differentiation potential and the composite ability with true bone ceramic(TBC). Methods The single cell suspension of MSCs was primarily cultured and passaged, which was prepared from the fetal mouse liver; the flow cytometry was applied to detectCD29, CD34, CD44 and CD45. The osteogenic differentiation was induced in chemical inducing system; the osteogenic induction potency was tested. The purified fetal mouse liver MSCs were compounded with TBC covered with collagen type Ⅰ in vitro and the cell attachment and proliferation to the TBC were observed. Results The primary MSCs of fetal mouse liver were easy to culture in vitro. They proliferated well and were easy to subcultured. The proliferation ability of primary and passaged MSCs was similar. Flow cytometric analysis showed the positive results for CD29, CD44 and the negative results for CD34, CD45. After 7 days of induction, the MSCs expressed collagen type I and alkaline phosphatase(ALP) highly. After 14 days of induction, the fixed quantity of ALP increased significantly. After 28 days of induction, calcium accumulation was observed by Von Kossa’s staining. Many liver MSCs attached to the surface of TBC. Conclusion The MSCs of the fetalmouse liver can be obtained, subcultured and purified easily. After culturing in chemical inducing system, the MSCs of fetal mouse liver can be successfully induced to osteoblast-like cells, attach to the surface of TBC and proliferate well. 

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF MESENCHYMAL STEM CELLS INDUCED TO DIFFERENTIATE INTERVERTEBRAL DISC CELLS

    Objective To review the study progress of mesenchymal stem cells induced to differentiate intervertebral disc cells Methods The recent related literature was reviewed. The theorical and experimental studies were summarized. Results MSCs had the potential of multidirectional differentiation.International experimental studies indicated the potential of MSCs induced to differentiate intervertebral disc cells. Conclusion MSCs induced to differentiate intervertebral disc cells has the fine prospect.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • EFFECT OF COREBINDING FACTOR α1 ON THE EXPRESSION OF OSTEOBLAST GENE MARKER MESENCHYMAL STEM CELLS

    Objective To study the effect of core-binding factor α1(Cbfa1)on the mesenchymal stem cells(MSCs) osteoblastic differentiation.Methods The MSCs were isolated from Japan white rabbits and cultured in vitro. The 3rd generation MSCs were infected with Cbfa1 recombinant adenovirus. The expression of Cbfa1 was detected by immunofluorescence after being infected for 3 days and the proliferation was estimated by MTT method from the 1st day to the 7th day. Then the MSCs were divided into four groups: the commonly cultured group, the simply induced group, the control adenovirus treatment group, and the Cbfa1 adenovirus treatment group. The expressions of mRNA for a various of osteoblast gene markers such as alkaline phosphatase, osteocalcin, osteopontin and type I collagen were analyzed based on reverse transcriptase polymerase chain reaction (RT-PCR). The change of adipose and myoblastic differentiation gene marker PPARγ2 and MyoD expression were detected by RT-PCR respectively.Results Positive staining of Cbfa1 was found in the MSCs infected with Cbfa1 adenovirus, and there was no significant difference in cell proliferation among the experimental groups(Pgt;0.05). The RT-PCR indicated that all the osteoblast gene markers except type I collagen were up-regulated in the Cbfa1 adenovirus treatment group. In contrast, the expressions of PPARγ2 and MyoD were restrained. Conclusion Cbfa1 can directly promote the differentiation of MSCs into osteoblasts. 

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • STUDY ON CULTURE AND IN VITRO OSTEOGENESIS OF BLOOD-DERIVED HUMAN MESENCHYMAL STEM CELLS

    Objective To establish a method of isolating and culturing adult human bloodderived mesenchymal stem cells(MSCs) and to investigate their osteogenic potential in vitro. Methods Thirty peripheral blood sampleswere collected from 30adult volunteers(15 ml per person).Adult human MSCs derived from peripheral blood were isolated from the lymphocyte separation fluid fraction of mononuclear cells, cultured in α-Modified Eagle’s Medium with low glucose containing 20% fetal bovine serum, and proliferated through a process of subculturing. The phenotype of MSCs was analyzed with flow cytometry. For in vitro osteogenic differentiation, MSCs from the second passage grew in the presence of osteogenic supplements (100 nmol/L dexamethasone,10 mmol/L β-glycerophosphate,50 μmol/L vitamin C, and 10 nmol/L 1,25-2-hydroxide vitamin D3). In the fifth passage cells, the activity of alkaline phosphatase, the expression level of collagen typeI, osteocalcin and osteonectin were determined. And the calcium tubercle formation would be examined after the continual one-month culture of the fifth passage. Results MSCs exsited in the pheripheral blood of adult human. And the clone forming efficiency of blood-derived MSCs was 0.27±0.22/106 mononuclear cells. The MSCs expressed CD44,CD54,CD105,and CD166,but did not CD14, CD34, CD45,and CD31.Under the function of osteogenic supplements, the MSCs were found to be higher activity of alkaline phosphatase and higher expression levels of collagen type Ⅰ, osteocalcin and osteonectin. And the calcium tubercle formation was examined throughtetracycline fluorescence labeling method. Conclusion The isolation and cultureconditions established for adult human MSCs may select a distinct population of peripheral blood-derived adherent cells. Adult human blood-derived MSCs possess osteogenic potential in vitro, and may be used as seed cells for bone tissue engineering.

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • Bone marrow mesenchymal stem cell-derived exosomes miR-183 target regulation of retinal dehydrogenase 11 to inhibit the development of retinitis pigmentosa

    ObjectiveTo observe the expressions of miR-183 and retinal dehydrogenase 11 (RDH11) in exosomes derived from bone marrow mesenchymal stem cells (BMSC), and to preliminarily explore their targeting relationship and their effects on retinal pigment epithelial (RPE) cells. MethodsBMSC from C57BL/6 (C57) mice were isolated and cultured, and BMSC-derived exosomes were identified. BMSC were divided into blank group, simulation blank control group (mimic-NC group), miR-183 simulation group (miR-183-mimic group). C57 mice and retinal degeneration 10 (rd10) mouse RPE cells were cultured with reference to literature methods. RPE cells from rd10 mice were transfected with BMSC exosomes and co-cultured and divided into control group, exosome group, mimic-NC-exosome group (mimic-NC-exo group), miR-183-mimic-exosome group (miR-183-mimic-exo group). The relative expression levels of miR-183, RDH11 mRNA and protein in C57 mice, rd10 mice and RPE cells in each group were detected by real-time quantitative polymerase chain reaction and western blotting. The targeting relationship between miR-183 and RDH11 was analyzed by bioinformatics website and dual luciferase reporter. Cell counting kit 8 was used to detect the effect of miR-183 on BMSC exosomes on RPE cell proliferation; in situ labeling end labeling method was used to detect RPE cells apoptosis. One-way ANOVA was used to compare multiple groups. ResultsCompared with C57 mouse RPE cells, the relative expression of miR-183 in rd10 mouse RPE cells was down-regulated, and the relative expression of RDH11 mRNA was up-regulated, and the differences were statistically significant (t=5.230, 8.548; P=0.006, 0.001). Compared with the blank group and the mimic-NC group, the relative expression of miR-183 mRNA in the exosomes of the miR-183-mimics group was significantly increased (F=60.130, P<0.05). After 24 h of co-culture, exosomes entered RPE cells. Compared with the mimic-NC-exo group, the relative expression of miR-183 mRNA in RPE cells in the miR-183-mimic-exo group was significantly increased, the proliferation ability was enhanced (t=7.311, P=0.002), and the number of apoptotic cells was decreased (F=10.949, P=0.012), and the differences were statistically significant (t=4.571, P=0.002). Bioinformatics website and dual-luciferase report confirmed that miR-183 has a targeting relationship with RDH11. Compared with the mimic-NC group, the relative expression of RDH11 mRNA and protein in the exosomes of the miR-183-mimic group was decreased, and the difference was statistically significant (t=5.361, 6.591; P=0.006, 0.003). After co-culture, compared with the control group, there was no significant difference in the relative expression of RDH11 mRNA and protein in RPE cells in the exosome group (t=0.169, 1.134; P=0.874, 0.320); The relative expressions of RDH11 mRNA and protein in RPE cells in -183-mimic-exo group were decreased, and the difference was statistically significant (t=5.554, 5.546; P=0.005, 0.005). ConclusionUp-regulation of BMSC-derived exosomal miR-183 promote the proliferation of RPE cells in vitro by targeting the expression of RDH11 and reduce the number of apoptosis.

    Release date:2022-09-14 01:19 Export PDF Favorites Scan
  • SELF-INDUCTION OF RABBIT MARROW STROMAL STEM CELLS INTO CHONDROCYTES BY TRANSFE CTIO N WITH RECONSTRUCTED PGL3-TANSFORMING GROWTH FACTOR β1 GENE IN VITRO

    Objective To explore an experimental method of transfecting the marrow stromal stem cells (MSCs) with the reconstructed PGL3-t ransforming growth factor-β1 (TGF-β1) gene and to evaluate the feasibility of selfinduction of MSCs to the chondrocytes in vitro so as to provide a scientific and experimental basis for a further “gene enhanced tissue engineering” research. Methods The rabbit MSCs was transfected with the reconstructed PGL3-TGF-β1gene by the Liposo mesMethod, the growth of the cells were observed, and the growth curve was drawn. The living activity of the transfected cells in the experimental group was evalua ted by MTT, and the result was significantly different when compared with that in the control group. By the immunohistochemistry method (SABC), the antigens of TGF-β1 and collagen Ⅱ were examined at 2 and 7 days of the cell culture afte r transfe ction with PGL3-TGF-β1gene. The pictures of the immunohistochemistry slice were analyzed with the analysis instrument, and the statistical analysis was perfor med with the software of the SPSS 11.0, compared with the control group and the blank group. Results Transfection of the cultured rabbit MSCs in vitro with the reconstructed PGL3-TGF-β1gene by the Liposomes Method achie ved a success, with a detection of the Luceraferase activity. The result was significantly different from that in the control group (Plt;0.01). Tested by MTT, the living acti vity of the transfected cells was proved to be significantly decreased (Plt;0.01 vs. the control group). By the immunohistochemistry method (SABC) to study TGF-β1 positive particles were detected in the experimental group,but there were no positive particles in the control and the blank groups. There was a significant difference between the two groups of the experiment and the control group based on the analysis of the ttest (Plt;0.01). By the immunohistochemistry me thod (SABC) to study collagen Ⅱ, there were more positive particles in the transfected cells in t he experimental group than in the control and the blank groups, and there was a significant difference between the experimental group and the two other groups based on the t-test (Plt;0.01). Conclusion Transfection of the rabbit MSCs with the reconstructed PGL3-TGF-β1 gene by the Liposomes Method is successful. There may be some damage to the cells when transfection is performed. The transfecte d BMS cells with PGL3-TGF-β1 gene can express and excrete TGF-β1when cultured in vitro. The transfected MSCs that secret TGF-β1 can be self-induced into the chondrocytes after being infected for 7 days when cultured in vitro.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • Extracellular vesicles derived from bone marrow mesenchymal stem cells improve lung tissue injury in mice with severe acute pancreatitis

    Objective To investigate the effect and potential mechanism of bone marrow mesenchymal stem cells (BMSCs) - derived extracellular vesicles (EVs) on lung tissue injury in mice with severe acute pancreatitis (SAP). Methods A total of 24 specific pathogen free grade male C57BL/6 mice and primary mouse lung microvascular endothelial cells (PMVECs) were selected. The mice were divided into sham group, SAP group, and BMSC group, with 8 mice in each group. The mouse primary PMVECs were divided into model group [sodium taurocholate (NaTC) group], BMSC-EV group, and control group. Extraction and characterization of healthy mouse BMSCs and their derived extracellular vesicles (BMSC-EVs) were conducted. A mouse model of SAP was established, and BMSC-EVs were injected into SAP mice by tail vein or intervened in PMVECs in vitro, to observe the pathological damage of pancreatic and lung tissues, the changes of serum amylase, lipase, and inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-6 (IL-6)], the expression of inflammatory factors of lung tissues and PMVECs, and the endothelial cell barrier related proteins [E-cadherin, ZO-1, intercellular cell adhesion molecule-1 (ICAM-1)], and tight junctions between PMVECs to explore the effects of BMSC-EVs on pancreatic and lung tissues in SAP mice and PMVECs in vitro. Results BMSCs had the potential for osteogenic, chondrogenic, and lipogenic differentiation, and the EVs derived from them had a typical cup-shaped structure with a diameter of 60-100 nm. BMSC-EVs expressed the extracellular vesicle-positive proteins TSG101 and CD63 and did not express the negative protein Calnexin. Compared with the mice in the sham group, the SAP mice underwent significant pathological damage to the pancreas (P<0.05), and their serum amylase, lipase, inflammatory factor IL-6, and TNF-α levels were significantly up-regulated (P<0.05); whereas, BMSC-EVs markedly ameliorated the pancreatic tissue damage in the SAP mice (P<0.05), down-regulated the levels of peripheral serum amylase, lipase, IL-6 and TNF-α (P<0.05), and up-regulated the level of anti-inflammatory factor IL-10 (P<0.05). In addition to this, the SAP mice showed significant lung histopathological damage (P<0.05), higher neutrophils and macrophages infiltration (P<0.05), higher levels of the inflammatory factors TGF-β and IL-6 (P<0.05), as well as reduced barrier protein E-cadherin, ZO-1 expression and elevated expression of ICAM-1 (P<0.05). BMSC-EVs significantly ameliorated lung histopathological injury, inflammatory cells infiltration, inflammatory factor levels, and expression of barrier proteins, and suppressed ICAM-1 expression (P<0.05). In the in vitro PMVECs experiments, it was found that intercellular tight junctions were broken in the NaTC group, and the levels of inflammatory factors TNF-α and IL-6 were significantly up-regulated (P<0.05), the protein expression of E-cadherin and ZO-1 was significantly down-regulated (P<0.05), and the expression of ICAM-1 was significantly up-regulated (P<0.05). BMSC-EVs significantly improved intercellular tight junctions in the NaTC group and inhibited the secretion of TNF-α and IL-6 (P<0.05), up-regulated the expression of the barrier proteins E-cadherin and ZO-1, and down-regulated the expression of ICAM-1 (P<0.05). Conclusion BMSC-derived EVs ameliorate lung tissue injury in SAP mice by restoring the lung endothelial cell barrier and inhibiting inflammatory cell infiltration.

    Release date:2024-11-27 02:45 Export PDF Favorites Scan
  • Mesenchymal stem cell-derived exosomes alleviate obliterative bronchiolitis after lung transplantation by regulating macrophage pyroptosis

    ObjectiveTo investigate the regulatory role of MSC-derived exosomes in obliterative bronchiolitis after lung transplantation. MethodsThe murine lung transplantation model was established with male C57BL/6 mice, and the mice were divided into a sham group (sham, n=6), a surgery group (OB, n=6), and a treatment group (OB+MSC-exo, n=6). The in vitro model was created by stimulating RAW264.7 with lipopolysaccharide+nigericin (LPS+Nigericin), and comprised a PBS group, a LPS+Nigericin group, and a LPS+Nigericin+MSC-exo group. Immunofluorescence and hematoxylin-eosin (HE) staining were used to analyze gasdermin D (GSDMD) expression, as well as lumen stenosis in lung grafts. Bioinformatics methods were employed to predict and screen target gene collagen type V alpha 1 (COL5A1). Q-PCR was used to measure mRNA expression levels of interleukin (IL)-1β, IL-18, IL-6, tumor necrosis factor-α (TNF-α), and COL5A1 in lung grafts and macrophages. Western blot was performed to detect Cleaved-Caspase 1 protein expression in lung grafts and GSDMD protein expression in macrophages. ResultsImmunofluorescence and HE staining revealed that in vivo infusion of MSC-exo reduced GSDMD expression in grafts, ameliorated tracheal epithelial cilia loss and lumen stenosis, and decreased Cleaved-Caspase 1 protein as well as IL-1β and IL-18 mRNA expression. MSC-exo treatment or COL5A1 knockdown reduced IL-1β, IL-18, IL-6, and TNF-α mRNA expression in macrophages, with comparable efficacy. MSC-exo infusion also decreased the number of COL5A1+ cells and mRNA expression levels in lung grafts. ConclusionMSC-derived exosomes alleviate obliterative bronchiolitis after lung transplantation by inhibiting COL5A1.

    Release date: Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content