west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Multi-scale" 25 results
  • The dual-stream feature pyramid network based on Mamba and convolution for brain magnetic resonance image registration

    Deformable image registration plays a crucial role in medical image analysis. Despite various advanced registration models having been proposed, achieving accurate and efficient deformable registration remains challenging. Leveraging the recent outstanding performance of Mamba in computer vision, we introduced a novel model called MCRDP-Net. MCRDP-Net adapted a dual-stream network architecture that combined Mamba blocks and convolutional blocks to simultaneously extract global and local information from fixed and moving images. In the decoding stage, we employed a pyramid network structure to obtain high-resolution deformation fields, achieving efficient and precise registration. The effectiveness of MCRDP-Net was validated on public brain registration datasets, OASIS and IXI. Experimental results demonstrated significant advantages of MCRDP-Net in medical image registration, with DSC, HD95, and ASD reaching 0.815, 8.123, and 0.521 on the OASIS dataset and 0.773, 7.786, and 0.871 on the IXI dataset. In summary, MCRDP-Net demonstrates superior performance in deformable image registration, proving its potential in medical image analysis. It effectively enhances the accuracy and efficiency of registration, providing strong support for subsequent medical research and applications.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Advances in methods and applications of single-cell Hi-C data analysis

    Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
  • Automatic epilepsy detection with an attention-based multiscale residual network

    The deep learning-based automatic detection of epilepsy electroencephalogram (EEG), which can avoid the artificial influence, has attracted much attention, and its effectiveness mainly depends on the deep neural network model. In this paper, an attention-based multi-scale residual network (AMSRN) was proposed in consideration of the multiscale, spatio-temporal characteristics of epilepsy EEG and the information flow among channels, and it was combined with multiscale principal component analysis (MSPCA) to realize the automatic epilepsy detection. Firstly, MSPCA was used for noise reduction and feature enhancement of original epilepsy EEG. Then, we designed the structure and parameters of AMSRN. Among them, the attention module (AM), multiscale convolutional module (MCM), spatio-temporal feature extraction module (STFEM) and classification module (CM) were applied successively to signal reexpression with attention weighted mechanism as well as extraction, fusion and classification for multiscale and spatio-temporal features. Based on the Children’s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) public dataset, the AMSRN model achieved good results in sensitivity (98.56%), F1 score (98.35%), accuracy (98.41%) and precision (98.43%). The results show that AMSRN can make good use of brain network information flow caused by seizures to enhance the difference among channels, and effectively capture the multiscale and spatio-temporal features of EEG to improve the performance of epilepsy detection.

    Release date: Export PDF Favorites Scan
  • Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion

    Medical image registration plays an important role in medical diagnosis and treatment planning. However, the current registration methods based on deep learning still face some challenges, such as insufficient ability to extract global information, large number of network model parameters, slow reasoning speed and so on. Therefore, this paper proposed a new model LCU-Net, which used parallel lightweight convolution to improve the ability of global information extraction. The problem of large number of network parameters and slow inference speed was solved by multi-scale fusion. The experimental results showed that the Dice coefficient of LCU-Net reached 0.823, the Hausdorff distance was 1.258, and the number of network parameters was reduced by about one quarter compared with that before multi-scale fusion. The proposed algorithm shows remarkable advantages in medical image registration tasks, and it not only surpasses the existing comparison algorithms in performance, but also has excellent generalization performance and wide application prospects.

    Release date: Export PDF Favorites Scan
  • Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks

    Atrial fibrillation (AF) is a life-threatening heart condition, and its early detection and treatment have garnered significant attention from physicians in recent years. Traditional methods of detecting AF heavily rely on doctor’s diagnosis based on electrocardiograms (ECGs), but prolonged analysis of ECG signals is very time-consuming. This paper designs an AF detection model based on the Inception module, constructing multi-branch detection channels to process raw ECG signals, gradient signals, and frequency signals during AF. The model efficiently extracted QRS complex and RR interval features using gradient signals, extracted P-wave and f-wave features using frequency signals, and used raw signals to supplement missing information. The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results, enabling early AF detection. Compared to current machine learning algorithms that use only RR interval and heart rate variability features, the proposed algorithm additionally employed frequency features, making fuller use of the information within the signals. For deep learning methods using raw and frequency signals, this paper introduced an enhanced method for the QRS complex, allowing the network to extract features more effectively. By using a multi-branch input mode, the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF. Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%, sensitivity was 97.72%, and specificity was 95.88%. The proposed model demonstrates excellent performance and can achieve automatic AF detection.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Multi-classification prediction model of lung cancer tumor mutation burden based on residual network

    Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.

    Release date:2023-10-20 04:48 Export PDF Favorites Scan
  • Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain

    High resolution (HR) magnetic resonance images (MRI) or computed tomography (CT) images can provide clearer anatomical details of human body, which facilitates early diagnosis of the diseases. However, due to the imaging system, imaging environment and human factors, it is difficult to obtain clear high-resolution images. In this paper, we proposed a novel medical image super resolution (SR) reconstruction method via multi-scale information distillation (MSID) network in the non-subsampled shearlet transform (NSST) domain, namely NSST-MSID network. We first proposed a MSID network that mainly consisted of a series of stacked MSID blocks to fully exploit features from images and effectively restore the low resolution (LR) images to HR images. In addition, most previous methods predict the HR images in the spatial domain, producing over-smoothed outputs while losing texture details. Thus, we viewed the medical image SR task as the prediction of NSST coefficients, which make further MSID network keep richer structure details than that in spatial domain. Finally, the experimental results on our constructed medical image datasets demonstrated that the proposed method was capable of obtaining better peak signal to noise ratio (PSNR), structural similarity (SSIM) and root mean square error (RMSE) values and keeping global topological structure and local texture detail better than other outstanding methods, which achieves good medical image reconstruction effect.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • Lung parenchyma segmentation based on double scale parallel attention network

    [Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the “encoder-decoder” structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.

    Release date:2022-10-25 01:09 Export PDF Favorites Scan
  • A method for photoplethysmography signal quality assessment fusing multi-class features with multi-scale series information

    Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Non-rigid registration for medical images based on deformable convolution and multi-scale feature focusing modules

    Non-rigid registration plays an important role in medical image analysis. U-Net has been proven to be a hot research topic in medical image analysis and is widely used in medical image registration. However, existing registration models based on U-Net and its variants lack sufficient learning ability when dealing with complex deformations, and do not fully utilize multi-scale contextual information, resulting insufficient registration accuracy. To address this issue, a non-rigid registration algorithm for X-ray images based on deformable convolution and multi-scale feature focusing module was proposed. First, it used residual deformable convolution to replace the standard convolution of the original U-Net to enhance the expression ability of registration network for image geometric deformations. Then, stride convolution was used to replace the pooling operation of the downsampling operation to alleviate feature loss caused by continuous pooling. In addition, a multi-scale feature focusing module was introduced to the bridging layer in the encoding and decoding structure to improve the network model’s ability of integrating global contextual information. Theoretical analysis and experimental results both showed that the proposed registration algorithm could focus on multi-scale contextual information, handle medical images with complex deformations, and improve the registration accuracy. It is suitable for non-rigid registration of chest X-ray images.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content