west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Myoblast" 21 results
  • EXPERIMENTAL STUDY ON THE MYOGENIC DIFFERENTIATION OF MARROW MESENCHYMAL STEM CELLS IN THE LOCAL MUSCLE TISSUES

    Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • EFFECT OF DIFFERENT ALLOGENIC CELLS INJECTED INTO DENERVATED MUSCLES ON NERVE REGENERATION IN RATS

    Objective To study the effect of allogenic different cells injected into denervated muscles on nerve regeneration. Methods Thirty-six adult female SD rats, weighed 120-150 g, were divided into four groups randomly (n=9, each group). Left sciatic nerves were cut down on germfree conditions and given primary suture of epineurium. Different cells were injected into the muscles of calf at once after operation every seven days and in all four times (group A: 1 ml Schwann cells at concentration of 1×106/ml; group B: 1 ml mixed cells of Schwann cells and myoblast cells at concentration of 1×106/ml; group C: 1 ml extract from the culture medium of kidney endothelial cells; and group D: 1 ml culture medium without FCS as control ). After 3 months, the specimen was observed on macrobody and histology, and the densities of neurilemma cell and myoceptor were counted. Results The means of proximate neurilemma cells were 0.187 7±0.054 2 in group A, 0.155 1±0.032 1 in group B, 0.072 4±0.023 7 in group C, and 0.187 7±0.054 2 in group D. The densities of myoceptor were 6.000±0.866 in group A,9.000±2.291 in group B,12.780±1.394 in group C, 3.110±0.782 in group D. Conclusion Schwann cells, mixed cells of Schwann cells with myoblast cells, and the extract from kidney endothelial cells canall accelerate the nerve regeneration. And the effect of extract from the kidney endothelial cell is superior to that of Schwann cell and mixed cell.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CONSTRUCTING MUSCLE TISSUE IN RABBITS WITH TISSUE ENGINEERING METHODS

    Objective To explore the possibilityof constructing tissue engineering muscles by combining allogeneic myoblasts with small instestinal submucosa(SIS) in rabbits.Methods A large number of purified myoblasts were obtained with multiprocedure digestion and repeated attachment method from skeletal muscles taken from extremities of immature rabbits which were born 7 days ago. The myoblasts were labeled with BrdU, and then combined with SIS to construct tissue engineering muscles. This kind of tissue engineering muscles were grafted into the gastrocnemius muscle defect (1.5 cm in length, 1.0 cmin width) of fifteen rabbits as the experimental group. The SIS was grafted into the same position in the control group. The rabbits were sacrificed 4, 6, 8 weeks after operation. The tissue engineering muscles were evaluated by macroscopic、histological and immunohistochemical observations, and by quantitative analysis of local immunocyte in the grafting site. Results Allogeneic myoblasts with SIS were combined perfectly in vitro. The SIS was connected tightly to surrounding skeletal muscles and inflammation response was obvious 4 weeks after grafting.The SIS began to break down and inflammation response became slight 6 and 8 weeks after operation. Compared with that of 8th week, the quantitative analysis oflocal immunocyte in 4th and 6th week in both experimental and control group hassignificance(Plt;0.05). Newly formed muscle tissues were found around SIS in the experimental group in 4th, 6th, and 8th week. Expression of BrdU and myosin immunohistochemical staining were positive in the experimental group and negative inthe control group.Conclusion Tissue engineering muscles of rabbits which are constructed by combining allogeneic myoblasts with SIS can survive and proliferate.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • PRELIMINARY RESEARCH ON CONSTRUCTION OF ARTIFICIAL ESOPHAGUS WITH CULTURED SQUAMOUS EPITHELIAL CELLS AND MYOBLAST CELLS SEEDED ON SMALL INTESTINAL SUBMUCOSA

    Objective To study the construction feasibility of a biodegradable artificial esophagus by the squamous epithelial cells and the myoblast cells seeded on the small intestinal submucosa(SIS) and to investigate the growth patternand angiogenesis of the co-cultured human embryonic squamous epithelial cells and the skeletal myoblasts in vivo. Methods The squamous epithelial cells and the myoblast cells were obtained from the 20-week aborted fetus. Both of their cellswere marked by 5-BrdU in vitro.The isolated cells were then seeded on the SIS and co-cultured in vitro for 24 hours, and then the compound of the cells and the SIS was transplanted into the subcutaneous tissue of the athymismus mice. The observation on the morphology and the cytokeratin AE3 and α-actin specified immunohistochemistry of the squamous epithelial cells and the myoblastcells was performed at each of the following time points: 3 days, 1 week, 2 weeks, and 3 weeks after transplantation. Results The morphological observation indicated that the cultured cells could penetrate into the small intestinal submucosa and form several-layered cell structures, and that the compound of the cells and the SIS could have angiogenesis within 2-3 weeks. The 5-BrdU specified immunohistochemical observation suggested that the cells growing in the small intestinal submucosa scaffold might be the cells transplanted.The cytokeratin AE3 specified and α-actin specified immunohistochemical studies demonstrated that the transplanted cells could differentiate in vivo. Conclusion It is possible to fabricate the framework of a biodegradable artificial esophagus with the epithelial cells and the myoblast cells seeded on the small intestinal submucosa.

    Release date:2016-09-01 09:24 Export PDF Favorites Scan
  • EFFECT OF IGF-1 ON PROLIFERATION AND DIFFERENTIATION OF PRIMARY HUMAN EMBRYONIC MYOBLASTS

    【Abstract】 Objective To investigate the effect of IGF-1 on the growth of primary human embryonicmyoblasts. Methods The method of incorporation of 3H-TdR was used to evaluate the abil ity of prol iferation of myoblasts.The count per minute (CPM) values of myoblasts at different concentrations(1, 2, 4, 8, 16 and 32 ng/mL) of IGF-1 were measured,and dose-effect curves were drawn to choose the optional concentration of IGF-1 to promote the prol iferation. Then theexperimental group of myoblasts received the addition of the optional concentration of IGF-1 in the growth medium, the controlgroup just received the growth medium. The flow cytometry was used to detect the cell cycle . The method of incorporation of3H-TdR was used to measure the peak-CPM. The myotube fusion rate was measured in myoblasts with different concentrations(0, 5,10, 15, 20, 25 and 30 ng/ mL) of IGF-1 in fusion medium, the dose-effect curves were also drawn, so as to decided the optional concentrationof IGF-1 in stimulating differentiation. Fusion medium with optional concentration of IGF-1 was used in experimentalgroup, and the control group just with fusion medium. The fusion rate of myotube and the synthesis of creatine kinase(CK) weredetected in both groups. Results The optional concentration of 5 ng/mL IGF-1 was chosen for stimulating prol iferation . It was shown that the time of cell cycle of control was 96 hours, but that of the experimental group was reduced to 60 hours. The results of flow cytometry showed that the time of G1 phase, S phase and G2M phase was 70.03, 25.01 and 0.96 hoursrespectively in control group, and were 22.66, 16.47 and 20.87 hours respectively in experimental group. The time-CPM value curves showed that the peak-CPM emerged at 96 hours in control group and 48 hours in experimental group, which was in agreementwith the results of the flow cytometry. The optional concentration stimulating prol iferation was 20 ng/mL IGF-1. Compared with control, the quantity of CK was increased by 2 000 mU/mL and the fusion rate was elevated by 30% in experimental group. Conclusion The concentrations of 20 ng/mL IGF-1 can elevat obviously the fusion rate and the quantity of CK. IGF-1 can enhance the prol iferation and differentiation of myoblasts via inducing the number of myoblasts at G1 phase and increasing the number of myoblasts at S and G2M phases.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY OF THE ROLE OF MYOSIN LIGHT CHAIN IN MYOGENESIS IN VITRO

    【Abstract】 Objective To investigate the role of myosin l ight chain (Myl) in myogenesis in vitro. Methods The extraocular muscle, diaphragm and gastrocnemius muscle myoblasts (eMb, dMb and gMb) were isolated and purified from 12 3-week-old C57BL/6 mice by using the enzyme digestion and Preplate technique, and then were subcultivated. The Myl expression in Mb was detected by RT-PCR and Western blot analysis; the Mb prol iferation activity was tested by methylene blue assay, and the myotube formation was observed. After anti-Myl antibody (1, 2, 3, 8, 16 ng/mL) was induced in the Mb culture (experimental group), the abil ity of prol iferation of myoblasts and the myotube formation were identified. Meanwhile, the Mb which was cultured without anti-Myl antibody was indentified as the control group. Results The results of RT-PCR and Western blot analysis showed that Myl1 and Myl4 mRNA and Myl protein were expressed in eMb, dMb and gMb at 24 hours after seeding, and their expression level were lower in eMb than in dMb and gMb (P lt; 0.01), and the latter two did not show any significant difference (P gt; 0.05). Myl2 and Myl3 mRNA was not detected in these three myoblasts. The prol iferation assay showed that the eMb prol iferated faster as compared with dMb and gMb (P lt; 0.01). eMb began to yield myotubes at 40 hours after seeding and dMb and gMb at 16 hours after seeding. At 6 days, the number of myotubes derived from eMb was (137.2 ± 24.5)/ field, which was significantly larger than that of myotubes from dMb [(47.6 ± 15.5) / field ] and gMb [(39.8 ± 5.1) field ] (P lt; 0.01). There was not statistically significant difference between the latter two groups (P gt; 0.05). After the antibody treatment, the absorbency values of the eMb, dMb and gMb in the experimental groups at each antibody concentration point were significantly higher than those in the corresponding control groups (P lt; 0.05), and the dose-dependent way was performed.The numbers of myotubes from dMb at 16 hours were (48.2 ± 7.1)/ well in the experimental group and (23.4 ± 4.9)/ well in the control group, and at 6 days were (40.6 ± 10.2)/ field in the experimental group and (63.1 ± 6.1)/ field in the control group.There was statistically significant difference between the experimental and control groups (P lt; 0.01). Conclusion Myl may play a role in myogenesis through the negative effect on the myoblast prol iferation.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • EFFECTS OF MYOBLAST DETERMINING GENE AND CONNEXIN 43 GENE ON FIBROBLAST DIFFERENTIATION AND BIOLOGICAL FUNCTION IN RATS

    Objective To investigate a change in the differentiation and biological function of the cultured rat fibroblast (FB) transfected by the myoblast determining gene (MyoD) and the connexin 43 (Cx43) gene and to explore the possible mechanism of the MyoD and Cx43 genes on treatment of ischemic heart disease (IHD). Methods The gene cloning technology was used to construct the eukaryotic expressed plasmid vector pLenti6/V5-DEST-MyoD and pLenti6/V5DEST-Cx43 in which MyoD cDNA or Cx43 cDNA was inserted. The RFL-6 FB cells were transfected with exogenetic MyoD cDNA or Cx43 cDNA via lipofectamine, followed by the Blasticidin (50 μg/ml) selection, according to the lentiviral expression system (ViraPower) protocol. The expression and the biological functions of MyoD and Cx43 in the transfectants were testified by RT-PCR, Western blot, and molecular and immunocytochemical methods. The mophological structure changes of the cells were observed under microscope before and after the transfection. Results The expression of MyoD and Cx43 was detected in the MyoD and Cx43 genes transfected FB with RT-PCR and Western blot. The immunocytochemical methods indicated the expressionsof the MyoD and Cx43 genes, while desmin and αactin were found in these cells. The myotubes were found from the cultures incubated a week in the differentiation medium, in which the transfected cells had a characteristic of the filamentsin their cytoplasm and showed a myoblast morphology. Conclusion MyoD cDNA can induce the cultured FB to differentiate into the myoblasts and Cx43 cDNA can enhance the gap junctional intercellular communication between the cell and the cell. Thus, a further experimental foundation for the therapy of IHD can be provided.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PROTECTIVE EFFECTS OF CELL THERAPY ON VENTRICORNUAL MOTOR NEURON

    Objective To research the protective effects of different allogeneic cells injected into denervated muscles on ventricornual motor neuron. Methods Thirty-six adult female SD rats, weighting 120-150 g, were individed into four groups randomly and each group had nine. Left ischiadic nerves of all the SD rats, which were cut down on germfree conditions,were operated by primary suture of epineurium. Different cells were injected into the triceps muscles of calf in each group after operation with once a week for 4 weeks:1 ml Schwann cells (1×106/ml) in group A, 1 ml mixed cells ofSchwann cells and myoblast cells (1∶1,1×106/ml) in group B, 1 ml extract from the mixed cells of Schwann cells, myoblast cells and endotheliocytes (1∶1∶1,1×106/ml)in group C,and 1 ml culture medium without FCS as control group(group D). The observation of enzymohistochemistry and C-Jun expression in the ventricornual motor neuron was made after three months of operation. Results After 3 months of operation, the expressions of C-Jun in groups A, B and C were superiorto that in group D; the number of neuron was more than that of group D. The expressions of C-Jun in the ventricornual motor neuron were as follows: 128.591±0.766 in group A, 116.729±0.778 in group B, 100.071±2.017 in group C and 144.648±2.083 in group D; showing statistically significant difference between groupsA, B, C and D(P<0.01). Enzymohistochemistry showed the well outlined and wellstacked cell body of neuron in groups A, B and C, and illdefined boundary of cytoplasm and nucleus. There was statistically significant defference in enzyme activity of the ventricornual motor neuron between groups(P<0.01). Conclusion All of the Schwann cells,mixed cells of Schwann cells with myoblast cells,and the extract from Schwann cells, myoblast cells and endotheliocytes can protect the ventricornual motor neuron. And the protectiveeffect of the extract from Schwann cells, myoblast cells and endotheliocytes is superior to that of Schwann cells and mixed cells.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • PROMOTION EFFECT OF CHONDROITIN SULFATE ON PROLIFERATION OF MYOBLASTS

    ObjectiveTo research the effect of chondroitin sulfate (CS) on the proliferation of myoblasts and the formation of myotube. MethodsThe myoblasts at passage 5 were used to prepare the cells suspension (1×108 cells/mL), and the experiment was divided into 4 groups based on CS concentration in the medium:group A (0 μg/mL), group B (50 μg/mL), group C (100 μg/mL), and group D (200 μg/mL). The cell morphology and myotube formation were observed by inverted microscope at 4, 5, and 8 days after treatment; MTT was used to detect the cell proliferation at 6 days, and the number of myotube was calculated by HE staining at 8 days. ResultsCells showed spindle shape after adherent, with ovoid nuclei and dense cytoplasm under inverted microscope. When the cell adherent rate was 90%, cells arranged in whorls swirled and showed long fusiform adherent growth; and then nuclei fusion resulted in formation of multincleated myotubes. At 8 days, most myoblasts fused to form myotube in group A, but less myotube was observed in groups B and C, and the least myotube in group D. The absorbance (A) values of groups A, B, C, and D were 0.045 2±0.004 4, 0.540 4±0.096 7, 0.660 9±0.143 4, and 1.069 0±0.039 0 respectively, showing significant difference between other groups (P<0.05) except between groups B and C P>0.05). HE staining observation showed that most myoblasts fused to form myotube in group A, but less myotube in groups B and C, and the least myotube in group D. The number of myotube of groups A, B, C, and D were 222.01±30.02, 193.13±42.46, 170.26±11.96, and 136.88±16.78 respectively, showing no significant difference among groups (F=1.658, P=0.252). ConclusionCS can significantly promote the proliferation of myoblast, the promotion is the biggest when CS concentration is 200 μg/mL.

    Release date:2016-10-21 06:36 Export PDF Favorites Scan
  • HETEROTOPIC CHONDROGENESIS OF CANINE MYOBLASTS ON POLY (LACTIDE-CO-GLYCOLIDE) SCAFFOLDS IN VIVO

    Objective To explore heterotopic chondrogenesis of canine myoblasts induced by cartilage-derived morphogenetic protein 2 (CDMP-2) and transforming growth factor β1 (TGF-β1) which were seeded on poly (lactide-co-glycolide) (PLGA) scaffolds after implantation in a subcutaneous pocket of nude mice. Methods Myoblasts from rectus femoris of 1-year-old Beagle were seeded on PLGA scaffolds and cultured in medium containing CDMP-2 and TGF-β1 for 2 weeks in vitro. Then induced myoblasts-PLGA scaffold, uninduced myoblasts-PLGA scaffold, CDMP-2 and TGF-β1-PLGA scaffold, and simple PLGA scaffold were implanted into 4 zygomorphic back subcutaneous pockets of 24 nude mice in groups A, B, C, and D, respectively. At 8 and 12 weeks, the samples were harvested for general observation, HE staining and toluidine blue staining, immunohistochemical staining for collagen type I and collagen type II; the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were determined by RT-PCR, the glycosaminoglycans (GAG) content by Alician blue staining, and the compressive elastic modulus by biomechanics. Results In group A, cartilaginoid tissue was milky white with smooth surface and slight elasticity at 8 weeks, and had similar appearance and elasticity to normal cartilage tissue at 12 weeks. In group B, few residual tissue remained at 8 weeks, and was completely degraded at 12 weeks. In groups C and D, the implants disappeared at 8 weeks. HE staining showed that mature cartilage lacuna formed of group A at 8 and 12 weeks; no cartilage lacuna formed in group B at 8 weeks. Toluidine blue staining confirmed that new cartilage cells were oval and arranged in line, with lacuna and blue-staining positive cytoplasm and extracellular matrix in group A at 8 and 12 weeks; no blue metachromatic extracellular matrix was seen in group B at 8 weeks. Collagen type I and collagen type II expressed positively in group A, did not expressed in group B by immunohistochemical staining. At 8 weeks, the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were detected by RT-PCR in group A at 8 and 12 weeks, but negative results were shown in group B. The compressive elastic modulus and GAG content of group A were (90.79 ± 1.78) MPa and (10.20 ± 1.07) μg/mL respectively at 12 weeks, showing significant differences when compared with normal meniscus (P lt; 0.05). Conclusion Induced myoblasts-PLGA scaffolds can stably express chondrogenic phenotype in a heterotopic model of cartilage transplantation and represent a suitable tool for tissue engineering of menisci.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content