Objective To explore an effect of the artificial nerve graft wrapped in the pedicled greater omentum on the early revascularization and an effectof the increased blood supply to the artificial nerve graft on the nerve regeneration. Methods Seventy-five rabbits were randomized into 3 groups, in which there were 2 experimental groups where the rabbits were made to abridge respectively with the artificial nerve grafts wrapped in the pedicled greater omentum (Group A) and with the artificial nerve grafts only (Group B), and the control group where the rabbits were abridged with the autologous nerve (Group C).On the 3rd, 7th and 14th days after operation, the evans blue bound to albumin (EBA) was injected into the vessels in all the grafts to show their revascularization. Twelve weeks after operation the nerve regeneration was evaluated with theelectrophysiological and histological observations on the serial sections, and was evaluated also with the transmission electron microscope. Results The artificial nerve grafts wrapped in the pedicled greater omentum in Group A and the autologous nerve grafts in Group C showed a beginning of revascularization on the3rd day after operation, and the revascularization was increased on the 7th and14th days. Compared with Groups A and C, the artificial nerve grafts in Group Bshowed a delayed revascularization on the7th day after operation. At 12 weeks after operation, there were no significant differences in the motor never conduction velocity, density of the regenerated myelinated nerve fibers, myelin sheath thickness, and diameter between Group A and Group C(Pgt;0.05). However, both Group A and Group C were superior to Group B in the above variables, with significant differences(Plt;0.05). Conclusion Utilization of the pedicled greater omentum to wrapthe artificialnerve grafts can promote an early revascularization of the artificial nerve graft and an early nerve regeneration of the artificial nerve graft because of an enhanced blood supply to the nerve graft.
OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.
Objective To explore the changes of calcitonin gene-related peptide (CGRP) and substance P (SP) levels after end-toend and end-to-side neurorrhaphy. Methods Twenty female Wistar rats were divided into 4 experimental groups and control group. In the experimental groups, common peroneal nerves were transected on both sides. End-to-side coaptation was performed on the left, while end-to-end coaptation on the right. After 1, 2, 4 and 27 weeks, the rats were sacrificed, and immunoreactivities of CGRP and SP in suture sites, lumbar spine and dorsal root ganglia(DRGs) were evaluated respectively. Results The expression ofCGRP and SP decreased in dorsal horn and DRGs within 1 week postoperatively. After 4 -27 weeks, CGRP and SP in dorsal horn could return to almost normal level, but they had little recovery in DRGs. Although the trend of change between end-to-end and end-to-side was coincident, in most experimental groups, thereexisted differences in the dorsal horn between end-to-end and end-to-side. The sciatic nerve stained by acetylcholinesterase, SP, CGRP and PGP 9.5 showed that the fibers could pass through the suture site of either end-to-end or end-to-side. Conclusion Nerve regeneration can be achieved by end-to-side neurorrhaphy, andthe mechanism of sensory nerve recovery of these two methods is similar. But the recovery in end-to-side coaptation is insufficient to some degree.
OBJECTIVE: To explore the possibility to bridge peripheral nerve defects by xenogeneic acellular nerve basal lamina scaffolds. METHODS: Thirty SD rats were randomly divided into 5 groups; in each group, the left sciatic nerves were bridged respectively by predegenerated or fresh xenogeneic acellular nerve basal lamina scaffolds, autogenous nerve grafting, fresh xenogeneic nerve grafting or without bridging. Two kinds of acellular nerve basal lamina scaffolds, extracted by 3% Triton X-100 and 4% deoxycholate sodium from either fresh rabbit tibial nerves or predegenerated ones for 2 weeks, were transplanted to bridge 15 mm rat sciatic nerve gaps. Six months after the grafting, the recovery of function was evaluated by gait analysis, pinch test, morphological and morphometric analysis. RESULTS: The sciatic nerve function indexes (SFI) were -30.7% +/- 6.8% in rats treated with xenogeneic acellular nerve, -36.2% +/- 9.7% with xenogeneic predegenerated acellular nerve, and -33.9% +/- 11.3% with autograft respectively (P gt; 0.05). The number of regenerative myelinated axons, diameter of myelinated fibers and thickness of myelin sheath in acellular xenograft were satisfactory when compared with that in autograft. Regenerated microfascicles distributed in the center of degenerated and acellular nerve group. The regenerated nerve fibers had normal morphological and structural characters under transmission electron microscope. The number and diameter of myelinated fibers in degenerated accellular nerve group was similar to that of autograft group (P gt; 0.05). Whereas the thickness of myelin sheath in degenerated accellular nerve group was significantly less than that of autograft group (P lt; 0.05). CONCLUSION: The above results indicate that xenogeneic acellular nerve basal lamina scaffolds extracted by chemical procedure can be successfully used to repair nerve defects without any immunosuppressants.
ObjectiveTo investigate the expression pattern and significance of Sonic Hedgehog (Shh) signaling pathway by observing whether the Shh signaling pathway components express in the adult rat after spinal cord injury (SCI). MethodsSixty-four healthy male Sprague-Dawley rats were randomly divided into normal group (group A, 8 rats), sham group (group B, 8 rats), and SCI group (group C, 48 rats). In group A, the rats served as controls without any treatment; a decompressive laminectomy was performed on T7-9 levels without SCI in group B; and modified Allen's method was used to make SCI model in group C. Basso Beattie Bresnahan (BBB) scale was used to assess the hind limb motor function at 12 hours, 1 day, 3 days, 7 days, 14 days, and 21 days after SCI; the immunofluorescence staining, real-time PCR, and Western blot were performed to detect the mRNA and protein expression levels of Shh and Glioma-associated oncogene homolog-1 (Gli-1) in SCI zone. ResultsThe BBB score slowly increased with time in group C, but the scores at each time point in group C were significantly lower than those in group A and group B (P<0.05). The results of immunofluorescence staining showed that Shh and Gli-1 rapidly increased after SCI in astrocytes. Real-time PCR and Western blot showed that the relative expression levels of Shh and Gli-1 mRNA and protein were gradually increased in group C and reached a maximum at 7 days. In addition, the relative expression levels of Shh and Gli-1 mRNA and protein in group C were significantly higher than those in group A and group B (P<0.05). On the other hand, compared with group A, the expression of Gli-1 protein was reduced in the cytoplasm but increased in nucleus in group C. ConclusionAstrocytes synthesize and secrete Shh and Gli-1 signaling molecules after SCI, both Shh and Gli-1 significantly up-regulate and exhibit dynamic changes, which suggests Shh signaling pathway may be involved in nerve cell regeneration after SCI.
OBJECTIVE: To evaluate the nerve regeneration after implantation of chitin tubes containing nerve growth factor(NGF) in the rabbit facial nerve. METHODS: Bilateral 8 mm defect of superior buccal divisions of the facial nerves were made in 16 New Zealand rabbits. Chitin tubes containing NGF were implanted into the gaps, and autologous nerves were implanted into the right gaps as control. The nerve regeneration was evaluated with electrophysiological and ultrastructural examination after 8 and 16 weeks of operation. RESULTS: Chitin tubes containing NGF successfully induced the nerve regeneration, regularly arranged myelinated and unmyelinated axons could be observed across the 8 mm gaps, and the myelin sheath was thick with clear lamellar structure at 8 weeks after operation, The regenerated nerve fibers increased and were more mature at 16 weeks after operation. There were no significant difference in electrical impulse conduction velocity through the neural regeneration between the experimental and control sides (P gt; 0.05). CONCLUSION: Chitin tubes containing NGF can provide optimal conditions for regeneration of rabbit facial nerve.
A comparative study of four methods of laryngeal muscle reinnervation in dogs is presented. Twenty-eight cases were divided into four groups to undergo main branch and branch of ansa cervicalis nerve anastomosis, and nerves implantation an neuromuscular pedicles transfer respectively for restoration of vocal cord adduction on left sides. The results showed that the four procedures seemed to induce effective reinnervation of adductor muscles. But the main branch of ansa cervicalis nerve suture was superior to the other methods among which little difference was noted in the functional recovery, electrophysiological activity and muscle strength. It demonstrated that main branch of ansa nerve suture was the best procedure for treatment of unilateral vocal cord paralysis among the four methods.
【 Abstract】 Objective To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40(NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. Methods The DNA fragment ofNEP1-40 coding sequence was ampl ified by PCR with designed primer from the cDNA l ibrary including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene del ivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. Results The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. Conclusion The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP1-40.
Objective To construct chemically extracted acellular nerve allograft (CEANA) with Schwann cells (SCs) from different tissues and to compare the effect of repairing peripheral nerve defect. Methods Bone marrow mesenchymal stem cells (BMSCs) and adi pose-derived stem cells (ADSCs) were isolated and cultured from 3 4-week-old SD mice with weighing 80-120 g. BMSCs and ADSCs were induced to differentiated MSC (dMSC) and differentiated ADSC (dADSC) in vitro.dMSC and dADSC were identified by p75 protein and gl ial fibrillary acidic protein (GFAP). SCs were isolated and culturedfrom 10 3-day-old SD mice with weighing 6-8 g. CEANA were made from bilateral sciatic nerves of 20 adult Wistar mice with weighing 200-250 g. Forty adult SD mice were made the model of left sciatic nerve defect (15 mm) and divided into 5 groups (n=8 per group) according to CEANA with different sources of SCs: autografting (group A), acellular grafting with SCs (5 × 105) (group B), acellular grafting with dMSCs (5 × 105) (group C), acellular grafting with dADSCs (5 × 105) (group D), and acellular grafting alone (group E). Motor and sensory nerve recovery was assessed by Von Frey and tension of the triceps surae muscle testing 12 weeks after operation. Then wet weight recovery ratio of triceps surae muscles was measured and histomorphometric assessment of nerve grafts was evaluated. Results BMSCs and ADSCs did not express antigens CD34 and CD45, and expressed antigen CD90. BMSCs and ADSC were differentiated into similar morphous of SCs and confirmed by the detection of SCs-specific cellsurface markers. The mean 50% withdrawal threshold in groups A, B, C, D, and E was (13.8 ± 2.3), (15.4 ± 6.5), (16.9 ± 5.3), (16.3 ± 3.5), and (20.0 ± 5.3) g, showing significant difference between group A and group E (P lt; 0.01). The recovery of tension of the triceps surae muscle in groups A, B, C, D, and E was 87.0% ± 9.7%, 70.0% ± 6.6%, 69.0% ± 6.7%, 65.0% ± 9.8%, and 45.0%± 12.1%, showing significant differences between groups A, B, C, D, and group E (P lt; 0.05). No inflammatory reactionexisted around nerve graft. The histological observation indicated that the number of myel inated nerve fiber and the myel in sheath thickness in group E were significantly smaller than that in groups B, C, and D (P lt; 0.01). The fiber diameter of group B was significantly bigger than that of groups C and D (P lt; 0.05) Conclusion CEANA supplementing with dADSC has similar repair effect in peripheral nerve defect to supplementing with dMSC or SCs. dADSC, as an ideal seeding cell in nerve tissue engineering, can be benefit for treatment of peripheral nerve injuries.
Objective Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root gangl ia(DRG). Methods Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, whichwere cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 × 103), group B (1 × 104), group C (1 × 105), and group D (0, blank control), and BMSCs were cocultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Results Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P lt; 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P lt; 0.05), but there was no significant difference between group A and group C, and between group A and group B (P gt; 0.05). The axon area index in groups A and B was significantly greater than that in group D (P lt; 0.05), but there was no significant difference between group C and group D (P gt; 0.05); there was no significant difference in groups A, B, and C (P gt; 0.05). Conclusion In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.