Objective To observe the effect of high glucose on the expression of activating transcription factor 4 (ATF4) in cultured retinal Muuml;ller glia cells. Methods The retinal tissue of Sprague-Dawley (SD) rats was collected, and Muuml;ller cells were isolated and cultured. The glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) of Muuml;ller cells were identified by streptavidin-biotin-peroxidase complex. Cultured rat Muuml;ller cells were divided into control group (5.5 mmol/L glucose), group A (20 mmol/L glucose), group B (30 mmol/L glucose) and group C (40 mmol/L glucose). ATF4 protein expressions in Muuml;ller cells of four groups were measured by Western blot four days after cultured. Results GFAP and GS expressed in more than 95% of Muuml;ller cells. Over 95% of Muuml;ller cells of group A, B and C were positive for GFAP and GS. Western blots indicated that ATF4 protein in group A, B and C increased obviously compared with the control group (q=0.293, 0.754,0.484;P<0.05). Conclusion High glucose can increase the expression of ATF4 protein and cause endoplasmic reticulum stress in retinal Muuml;ller glia cells in vitro.
Objective To clone the genes of nogo-66 and NEP1-40 from spinal cord of rat and to realize the expression of its protein in vitro. Methods The nogo-66 and NEP1-40 genes were cloned from the spinal cord of juvenil rat by use of RT-PCR techniques, and the objective genes were bonded to T vector through gene coupled action, recombinant plasmid were sequencing, and the genes were cloned into PQE30-GST vector, then the recombinant plasmids were induced by isopropylthiogalactoside(IPTG) to express the proteins. The two proteins were purified by Ni-column and detected by using Westernblot test. Results The Nogo-66 and NEP1-40 genes were successfully cloned from rat, which were 215 bp and 137 bp for each one when add the enzyme site. No gene mutations were detected in the two genes after sequencing. The expression plasmids were cut by the two enzyme (BamH Ⅰ and Hind Ⅲ), the target bands were seen on the results of electrophoresis. The expression plasmids were induced by IPTG and got the purified GST fusion protein nogo-66 and NEP1-40, which relative molecular weight were 33.2×103 and 30.3×103 respectively. The results of Westernblot test confirmed that the antigenicity of the two proteins was precise. Conclusion Nogo-66 and NEP1-40 proteins can be expressed in a high efficiency in vitro using genetic engineering, so it provides a good basis for further research on its function and vaccine for spinal injury.
PURPOSE:To verify existance of a-,~-,and 3'-protein kinase C(PKC)subspecies and their localization in rabbit retina. METHODS: Using an immunohistoehemical technique with mono- elonal antibodies against PKC isozymes- I (a),-I[ (13),and -~[ (Y) to characterize the distribution of PKC in rabbit retina. RESULTS:There is a positive immunostaining for a-,13-,and ~-PKC in rabbit retina. The immunoreactivity of a-PKC was observed mainly in the bipolar cells of inner nuclear layer and the outer segments of photorecptors. The positive immunostaining of 13-PKC could be seen in the ganglion cells,inner plexiform layer,inner nuclear layer,and the outer segments of photoreceptors. A diffuse and weak staining of Y-PKC is recognized in the ganglion cell layer,inner plexifrom layer,inner nuclear layer, and the outer segments of photoreceptors. CONCLUSION:The protein kinase C sub- speeies-a,-~,and-'Y are present in retina which is a part of the central nervous system
Abstract: Objective To study the changes of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) expression of isolated rat hearts after diazoxide preconditioning (DPC), and to explore the possible mechanism of cAMP signaling pathway in myocardial protection by DPC. Methods Isolated working heart Langendorff perfusion models of 40 Wistar rats were set up and were divided randomly into four groups. For the ischemia reperfusion injury(I/R) group (n=10), 30 min of equilibrium perfusion was followed by a 60 min reperfusion of KrebsHenseleit (K-H) fluid. The DPC group (n=10) had a 10 min equilibrium perfusion and two cycles of 5 min of 100 μmol/L diazoxide perfusion followed by a 5 min diazoxidefree period before the 30 min ischemia and the 60 min reperfusion of K-H fluid. The blank control group (control group, n=10) and the Dimethyl Sulphoxide(DMSO) group (n=10) were perfused with the same treatment as in the DPC group except that diazoxide was replaced by natriichloridum and DMSO respectively. The activity of creatine kinase (CK) in coronary outflow, the activity of malonyldialdehyde (MDA) and superoxide dismutase (SOD) in myocardium were detected. And the scope of myocardial infarction and the concentrations of myocardial cAMP and PKA were also assessed. Results Compared with the I/R group, the level of MDA for the DPC group decreased significantly (8.28±2.04 nmol/mg vs. 15.52±2.18 nmol/mg, q=11.761,Plt;0.05), the level of SOD increased significantly (621.39±86.23 U/mg vs. 477.48±65.20 U/mg, q=5.598,Plt;0.05). After a 30 min reperfusion, compared with the I/R group, the content of CK decreased significantly (82.55±10.08 U/L vs. 101.64±19.24 U/L, q=5.598, Plt;0.05) and the infarct size reduced significantly (5.63%±9.23% vs.17.58%±5.76%, q=6.176,Plt;0.05) in the DPC group. The cAMP concentration in the DPC group was much higher than that in the I/R group (0.64±0.07 pmol/g vs. 0.34±0.05 pmol/g, q=14.738,Plt;0.05), and PKA concentration was also much higher than that in the I/R group [17.13±1.57 pmol/(L·min·mg) vs. 12.85±2.01 pmol/(L·min·mg), Plt;0.05]. However, there were no significant differences between the I/R group, DMSO group and the control group in the above indexs (Pgt;0.05). Conclusion DPC significantly improves the releasing of cAMP and PKA, decreases oxygen free radicals, and relieves myocardial ischemia reperfusion injury. The cAMP signaling pathway may be involved in triggering the process of myocardial protection mechanisms of DPC.
Objective To investigate the effect of hypericin on the activity of protein kinase C (PKC) in cultured human retinal pigment epithelium (RPE) cells in vitro.Methods RPE cells were cultured in standard medium with 10% serum concentrations containing 0.5 to 5.0 μmol/L hypericin with or without preincubation of phorbol 12-myristate 13-acetate (PMA). The activities of cytosolic PKC (c-PKC) and membranous PKC (m-PKC) were assayed by PKC kit. Results The original activities of c-PKC and m-PKC of RPE cells were (35.34±4.10) pmol·min-1·mg-1and (62.52±8.80) pmol·min-1·mg-1.The activity of c-PKC in RPE cells with PMA preincubation decreased rapidly in 5 minutes, with a subsequent slow decrease after 20 minutes and a decrease to 18% of the activity of c-PKC in RPE cells without PMA preinubation after 60 minutes. While the activity of m-PKC in RPE cells with PMA preincubation increased gradually after 5 minutes and reduced after reached the peak at 40 minutes, and then returned to baseline after 60 minutes, eventually decreased below 30% of the control group. When RPE cells were cultured with PMA for 48 hours, the activities of c-PKC and m-PKC were hardly detectable, while RPE cells were cultured with both PMA and hypericin, hypericin could counteract most of down-regulation by PMA. Conclusion Hypericin may inhibit the translocation of PKC in RPE cells,change the activity of PKC, promote the apoptosis of RPE cells likely,and then prevent proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis,2003,19:55-58)
Objective To explore the expression of survivin gene in retinoblastoma (RB) and its relationship with the stages and histodifferentiation degree of RB and the expression of p53、bcl-2 proteins. Methods Expression of survivin, p53 and bcl-2 proteins in 38 RB conventional paraffin samples were detected with survivin, p53 and bcl-2 monoclonal antibodies respectively by immunohistochemical assay. The expression of survivin of normal retina in 6 control samples was observed. Results In 38 cases of RB, positive expression of survivin was found in 20 (52.6%); while none of the 6 normal retinal tissue expressed survivin, which had significant difference between the two group (P<0.05). The positive expression of survivin did not correlate with sex of patient, disease stages and histological type (P>0.05). In 38 RB cases, positive expression of p53 was in 25 with the rate of 65.8%, and of bcl-2 in 18 with the rate of 47.4%. The positive-expressed rates were much higher in positive-expressed p53 and bcl-2 group than those in the negative-expressed p53 and bcl-2 group(P<0.05). Conclusion The increase of the expression of survivin implies that it may take part in the occurrence and development of RB; the interaction among survivin, p53 and bcl-2 may participate in the access and the course of RB. (Chin J Ocul Fundus Dis,2004,20:215-217)
OBJECTIVE L-arginine is a semiessential dibasic amino acid for humans and animals. This paper aims to investigate the therapeutic effect of L-arginine supplementation on partial-thickness burned patients. METHODS A randomized controlled clinical trial was designed to evaluate the cellular immune function (T cell count, ratio of CD4/CD8, natural killer cell activity and IL-2 level) and protein metabolism (transferrin, prealbium and nitrogen balance) of patients in the experimental group which daily given 15 g arginine and the control group which daily given 25 g glycine. RESULTS The natural killer cell activity and IL-2 production in the experimental group were higher than that of the control group. The suppression of transferrin and prealbium was alleviated and the nitrogen balance was improved in the experimental group. CONCLUSION It suggests that exogenous arginine supplementation is beneficial for recovery of cellular immunity function and protein anabolism in partial-thickness burned patients.
Objective To investigate the effects of cytokines on the expression of syndecan-1 in cultured human retinal pigment epithelial (RPE) cells and the signal transduction pathway. Methods Reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of syndecan-1 mRNA and protein in normal RPE cells. The expression of syndecan-1 in RPE cells stimulated by different cytokines was detected and quantitatively analyzed by image process of immunofluorescence. The stimulation included 7 and 35 ng/ml tumor necrosis factor (TNF)-alpha; for 24 hours, 1 and 6 mu;g/ml lipopolysaccharide (LPS) for 11 hours, 7 ng/ml TNF-alpha; for 0 to 24 hours (once per 2 hours, and 13 times in total), and 30% supernatant of monocyte/macrophage strain (THP-1 cells) for 3, 14 and 43 hours. The effect of 30% supernatant of THP-1 cells was assayed after pretreated by PD098059[the specific inhibitor of extracellular signal regulated kinase(ERK) 1/2]for 2 hours. After exposed to 30% supernatant of THP-1 cells for 3 hours and treated by 0.25% trypsin for 5 minutes, RPE cells attaching was evaluated by methyl thiazolyl tetrazolium assay. Results In normal human RPE cells, expressions of syndecan-1 mRNA and protein were detected, and b syndecan-1 positive yellowish green fluorescence was found in the cell membrane and cytoplasm while light green fluorescence was in the nucleus. As the concentration and stimulated time of TNF-alpha; or LPS increased, the fluorescence intensity decreased(Plt;0.01), and after exposed to 30% supernatant of THP-1 cells, weaker fluorescence intensity was detected (Plt;0.001). Pretreatment with 50 mu;mol/L PD098059 for 2 hours partly inhibited the effect of THP-1 cells supernatant. After exposed to 30% supernatant of THP-1 cells for 3 hours, the number of attached cells decreased compared with the controls(Plt;0.05). Conclusions TNF-alpha; and LPS down-regulate the expression of syndecan-1 in cultured human RPE cells. The supernatant of THP-1 cells down-regulates the expression of syndecan-1 and lessens the cells attaching, which is at least mediated by ERK 1/2 pathway. (Chin J Ocul Fundus Dis, 2006, 22: 113-116)
Objective To investigate the effects of exosomes from cultured human retinal pigment epithelium (ARPE-19) cells affected by oxidative stress on the proliferation and expression of vascular endothelial growth factor-A (VEGF-A) and Akt of ARPE-19 cells. Methods Culture ARPE-19 cells. The concentration of 2.5 μmol/L rotenone was selected to simulate oxidative stress and isolated ARPE-19-exosome. Exosomes were isolated by ExoQuick exosome precipitation solution. Transmission electron microscopy was used to identify the morphology of exosomes. Western blot was used to detect exosomes’ surface-specific maker protein CD63. ARPE-19 cells affected by oxidative stress were cultured with exosome as experimental group, normal ARPE-19 cells were cultured with exosome as control group. The cell proliferation was examined by methyl thiazolyl tetrazolium assay. Western blot and immunofluorescence assay were used to detect the expression levels of VEGF-A and Akt protein. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the levels of VEGF-A mRNA and Akt mRNA. Results The diameter of normal ARPE-19-exosomes ranged from 50 to 150 nm. The isolated exosomes expressed CD63. AREP-19 cells were cultured with ARPE-19 (affected by rotenone)-exosome, the cell viability in experimental group was significantly reduced than in the control group. Green fluorescence was observed in the cytoplasm under fluorescence microscope. Compared with the control group, VEGF-A was up-regulated expressed and Akt was down-regulated expressed. Western blot results showed that, VEGF-A protein expression in the experimental group were higher than the control group. Akt protein expression in the experimental group were less than the control group. The difference was statically significant (t=3.822, 6.527;P<0.05). RT-PCR results showed that VEGF-A mRNA expression levels was higher in the experimental group than the control group. Akt mRNA expression levels was lower in the experimental group than the control group. The difference was statically significant (t=8.805, −7.823;P<0.05). Conclusions Exosomes from ARPE-19 cells affected by oxidative stress inhibit the proliferation of normal ARPE-19 cells, increase the expression of VEGF-A and reduce the expression of Akt.
Objective To investigate the role of ephrin A genes in the development of oxygen induced retinalneovascularization (OIR) in mice.Methods The OIR model was established by oxygen induction in new born C57BL/6J mice.Reversed transcript polymerase chain reaction (RT-PCR) was used to measure the expression levels of ephrin A1-A5 in retinas of mice in experimental and normal control group.Results All of the ephrin A family genes expressed in normal retinas. Ephrin A1 mRNA was significantly higher in OIR group(t=3.19,P=0.019); ephrin A2 mRNA was higher in the 15-day-old OIR retinas(t=3.71,P=0.033); ephrin A3-A5 mRNA decreased or disappeared in 12 and 13-day-old RNV mice, and increased in 15-day-old OIR mice. Conclusion Ephrin A genes are involved in the development of retina and OIR.