west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Scaffold material" 35 results
  • ADVANCES OF SCAFFOLD MATERIALS OF INTERVERTEBRAL DISC TISSUE ENGINEERING

    Objective To introduce the research advances of scaffold materials of intervertebral disc tissue engineering. Methods The recent original articlesabout the scaffolds in intervertebral disc tissue engineering were extensively reviewed. Results At present, agarose, alginate gel, collagentype Ⅰ, PLA, PGAare still major scaffold materials for intervertebral disc tissue engineering because of their good biocompatibility. Conclusion It is one of the popular studies on current intervertebral disc tissue engineering to explore the ideal scaffold materials.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
  • FEASIBILITY OF CALCIUM POLYPHOSPHATE FIBER AS SCAFFOLD MATERIALS FOR TENDON TISSUE ENGINEERING IN VITRO

    OBJECTIVE: To study the feasibility of calcium polyphosphate fiber (CPPF) as the scaffold material of tendon tissue engineering. METHODS: CPPF (15 microns in diameter) were woven to form pigtail of 3 mm x 2 mm transverse area; and the tensile strength, porous ratio and permeability ratio were evaluated in vitro. Tendon cells (5 x 10(4)/ml) derived from phalangeal flexor tendon of SD rats were co-culture with CPPF scaffold or CPPF scaffold resurfaced with collagen type-I within 1 week. The co-cultured specimens were examined under optical and electric scanning microscope. RESULTS: The tensile strength of CPPF scaffolds was (122.80 +/- 17.34) N; permeability ratio was 61.56% +/- 14.57%; and porous ratio was 50.29% +/- 8.16%. CPPF had no obvious adhesive interaction with tendon cells, while CPPF of surface modified with collagen type-I showed good adhesive interaction with tendon cells. CONCLUSION: The above results show that CPPF has some good physical characteristics as scaffold of tendon tissue engineering, but its surface should be modified with organic substance or even bioactive factors.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • THE COMPARATIVE STUDY ON THE REPARATIVE EFFECT OF PLGA AND COLLAGEN SPONGE COMBINEDWITH BMP ON THE ARTICULAR CARTILAGE DEFECT OF RABBITS/

    【Abstract】 Objective To compare the effect of PLGA and collagen sponge combined with rhBMP-2 on repairing ofarticular cartilage defect in rabbits respectively. Methods PLGA and collagen sponge were made into cyl inders which were 4 mm in diameter and 3 mm in thickness, and compounded with rhBMP-2 (0.5 mg). Defect 4 mm in diameter were made in both of femoral condyles of 24 two-month-old New Zealand white rabbits. The defects in right 18 knees were treated with PLGA/rhBMP-2 composites (experimental group 1), and the left 18 knees were treated with collagen sponge/rhBMP-2 composites (experimental group 2), the other 12 knees were left untreated as control group. At 4, 12 and 24 weeks after operation, the animals were sacrificed and the newly formed tissues were observed macroscopically and microscopically, graded histologically and analyzed statistically. Results From the results of macroscopical and microscopical observation, in the experimental group 1, the defects were filled with smooth and translucent cartilage; while in the experimental group 2, the white translucent tissues did notfill the defects completely; and in the two experimental groups, the new cartilage tissues demarcated from the surrounding cartilage,chondrocytes distributed uniformly but without direction; a l ittle fibrous tissue formed in the control group 4 weeks postoperatively. In the experimental group 1, the defects were filled completely with white, smooth and translucent cartilage tissue without clear l imit with normal cartilage; while in the experimental group 2, white translucent tissues formed, the boundary still could be recognized; in the two experimental groups, the thickness was similar to that of the normal cartilage; the cells paralleled to articular surface in the surface layer, but in the deep layer, the cells distributed confusedly, the staining of matrix was positive but a l ittle weak; subchondral bone and tide mark recovered and the new tissue finely incorporated with normal cartilage;however, in the control group, there was a l ittle of discontinuous fibrous tissue, chondrocytes maldistributed in the border andthe bottom of the defects 12 weeks postoperatively. In the experimental group 1, white translucent cartilage tissues formed, the boundary disappeared; in the experimental group 2, the color and the qual ity of new cartilage were similar to those of 12 weeks; in the two experimental groups, the thickness of the new cartilage, which appeared smooth, was similar to that of the normal cartilage, the chondrocytes arranged uniformly but confusedly; the staining of matrix was positive and subchondral bone and tide mark recovered, the new tissue finely incorporated with normal cartilage; in the control group, a layer of discontinuous fibrous tissue formed in the bottom of the defects 24 weeks postoperatively. Results of histological grade showed that there were significantdifference between experimental group (1 and 2) and control group at any time point (P lt; 0.01); the scores of 12 weeks and 24 weeks in experimental group 1 and 2 had a significant difference compared with that of 4 weeks (P lt; 0.01), there was no significant difference between 12 weeks and 24 weeks (P gt; 0.05), and there were no significant difference between the two experimental groups at the same time point (P gt; 0.05). Conclusion Both PLGA and collagen sponge as a carrier compounded with rhBMP-2 can repair articular cartilage defects.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON COLLAGEN HYDROGEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

    Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING

    ObjectiveTo summarize the research progress of several three-dimensional (3-D) printing scaffold materials in bone tissue engineering. MethodThe recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. ResultsCompared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. ConclusionsThe development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CHITOSAN/ALLOGENEIC BONE POWDER COMPOSITE POROUS SCAFFOLD TO REPAIR BONE DEFECTS IN RATS

    ObjectiveTo explore the feasibility of chitosan/allogeneic bone powder composite porous scaffold as scaffold material of bone tissue engineering in repairing bone defect. MethodsThe composite porous scaffolds were prepared with chitosan and decalcified allogeneic bone powder at a ratio of 1∶5 by vacuum freeze-drying technique. Chitosan scaffold served as control. Ethanol alternative method was used to measure its porosity, and scanning electron microscopy (SEM) to measure pore size. The hole of 3.5 mm in diameter was made on the bilateral femoral condyles of 40 adult Sprague Dawley rats. The composite porous scaffolds and chitosan scaffolds were implanted into the hole of the left femoral condyle (experimental group) and the hole of the right femoral condyle (control group), respectively. At 2, 4, 8, and 12 weeks after implantation, the tissues were harvested for gross observation, histological observation, and immunohistochemical staining. ResultsThe composite porous scaffold prepared by vacuum freeze-drying technique had yellowish color, and brittle and easily broken texture; pore size was mostly 200-300μm; and the porosity was 76.8%±1.1%, showing no significant difference when compared with the porosity of pure chitosan scaffold (78.4%±1.4%) (t=-2.10, P=0.09). The gross observation and histological observation showed that the defect area was filled with new bone with time, and new bone of the experimental group was significantly more than that of the control group. At 4, 8, and 12 weeks after implantation, the bone forming area of the experimental group was significantly larger than that of the control group (P < 0.05). The immunohistochemical staining results showed that osteoprotegerin (OPG) positive expression was found in the experimental group at different time points, and the positive expression level was significantly higher than that in the control group (P < 0.05). ConclusionChitosan/allogeneic bone powder composite porous scaffold has suitable porosity and good osteogenic activity, so it is a good material for repairing bone defect, and its bone forming volume and bone formation rate are better than those of pure chitosan scaffold.

    Release date: Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF PORCINE SKELETAL MUSCLE ACELLULAR MATRIX FOR ADIPOSE TISSUE ENGINEERING

    Objective Extracellular matrix is one of the focus researches of the adi pose tissue engineering. To investigate the appropriate method to prepare the porcine skeletal muscle acellular matrix and to evaluate the biocompatibility of the matrix. Methods The fresh skeletal muscle tissues were harvested from healthy adult porcine and were sl iced into2-3 mm thick sheets, which were treated by hypotonic-detergent method to remove the cells from the tissue. The matrix was then examined by histology, immunohistochemistry, and scanning electron microscopy. The toxic effects of the matrix were tested by MTT. Human adi pose-derived stem cells (hADSCs) were isolated from adi pose tissue donated by patients with breast cancer, and identified by morphology, flow cytometry, and differentiation abil ity. Then, hADSCs of passage 3 were seeded into the skeletal muscle acellular matrix, and cultured in the medium. The cellular behavior was assessed by calcein-AM (CA) and propidium iodide (PI) staining at 1st, 3rd, 5th, and 7th days after culturing. Results Histology, immunohistochemistry, and scanning electron microscopy showed that the muscle fibers were removed completely with the basement membrane structure; a large number of collagenous matrix presented as regular network, porous-like structure. The cytotoxicity score of the matrix was grade 1, which meant that the matrix had good cytocompatibil ity. The CA and PI staining showed the seeded hADSCs had the potential of spread and prol iferation on the matrix. Conclusion Porcine skeletal muscle acellular matrix has good biocompatibility and a potential to be used as an ideal biomaterial scaffold for adi pose tissue engineering.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF ARTICULAR CARTILAGE SCAFFOLD FOR TISSUE ENGINEERING

    Objective To review the research progress of articular cartilage scaffold materials and look into the future development prospects. Methods Recent literature about articular cartilage scaffold for tissue engineering was reviewed, and the results from experiments and clinical application about natural and synthetic scaffold materials were analyzed. Results The design of articular cartilage scaffold for tissue engineering is vital to articular cartilage defects repair. The ideal scaffold can promote the progress of the cartilage repair, but the scaffold materials still have their limitations. Conclusion It is necessary to pay more attention to the research of the articular cartilage scaffold, which is significant to the repair of cartilage defects in the future.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF SCAFFOLD MATERIALS IN SKELETAL MUSCLE TISSUE ENGINEERING

    Objective To review the current researches of scaffold materials for skeletal muscle tissue engineering, to predict the development trend of scaffold materials in skeletal muscle tissue engineering in future. Methods The related l iterature on skeletal muscle tissue engineering, involving categories and properties of scaffold materials, preparative techniqueand biocompatibil ity, was summarized and analyzed. Results Various scaffold materials were used in skeletal muscle tissue engineering, including inorganic biomaterials, biodegradable polymers, natural biomaterial, and biomedical composites. According to different needs of the research, various scaffolds were prepared due to different biomaterials, preparative techniques, and surface modifications. Conclusion The development trend and perspective of skeletal muscle tissue engineering are the use of composite materials, and the preparation of composite scaffolds and surface modification according to the specific functions of scaffolds.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • PROGRESS ON SCAFFOLD OF VASCULAR TISSUE ENGINEERING

    Objective To introduce the materials, preparative technique and endothel ial ization modification of scaffold. Methods The recent original articles about vascular tissue engineering were extensively reviewed and analyzed. Results The materials including natural materials, biodegradable polymers and composite materials were studied in the field of scaffold. The ways of casting, cell self-assembly, gel spinning and electrospinning were appl ied to prepare the scaffold of vascular tissue engineering. The modification of scaffold was one of the most important elements for vascular tissue engineering. Conclusion The recent researchs about scaffold of vascular tissue engineering focus on composite material and electrospinning, the modification of scaffold can improve the abil ity of adhesion to endothel ial cells.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content