west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Sciatic nerve" 28 results
  • EFFECT OF BASIC FIBROBLAST GROWTH FACTOR ON REPAIRING TRANSECTED SCIATIC NERVE IN RATS

    OBJECTIVE To investigate the effects of basic fibroblast growth factor(bFGF) on repairing transected sciatic nerves in rats. METHODS The animal models of the transected sciatic nerve of 40 SD rats were established, which divided into 4 groups: normal saline (NS) group, nerve growth factor (NGF) group, bFGF group and normal control group. The epineurium of the transected sciatic nerve was sutured under microscope, then bFGF or NGF was dropped into local sites and injected intramuscularly once a day for 30 days after operation. Functional repair for the transected sciatic nerves was studied by nerve conductive velocity (NCV) and sciatic nerve function index (SFI). RESULTS As a criterion, the level of the normal control group was regarded as zero, SFI of NS group, NGF group and bFGF group were -114.30 +/- 10.34, -70.50 +/- 11.01, -50.45 +/- 7.82 respectively at 1 month after operation, and they were -54.96 +/- 16.46, -35.21 +/- 10.80, -27.53 +/- 11.23 respectively in 3 months after operation. NCV of bFGF group was significantly faster than NS group and NGF group. CONCLUSION bFGF can significantly promote the functional repair of injured peripheral nerve, and its effects are better than NGF.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • EFFECT OF RECOMBINANT CO-EXPRESSION ADENOVIRUS OF NERVE GROWTH FACTOR AND MYELIN ASSOCIATED GLYCOPROTEIN GENES ON RAT SCIATIC NERVE INJURY

    ObjectiveTo construct recombinant adenovirus expressing nerve growth factor (NGF) and myelin associated glycoprotein (MAG) (Ad-NGF-MAG) and to investigate its effect on repair and regeneration of sciatic nerve injury in rats. MethodsNGF and MAG gene sequences were cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK293 cells, the recombinant Ad-NGF-MAG underwent sequence and identification. Thirty-two male Sprague Dawley rats were randomly divided into 4 groups (n=8): control group (normal control), adenovirus vector group (Ad group), Ad-NGF group, and Ad-NGF-MAG group. The sciatic nerve injury model was established by transection of the right sciatic nerve; then, the empty adenovirus vector, Ad-NGF, and Ad-NGF-MAG were injected into the gastrocnemius muscle of the affected limb at a dose of 1×108 PFU every other day for 3 times in Ad group, AdNGF group, and Ad-NGF-MAG group, respectively. The right sciatic nerve was exposed only, and then the incision was closed in the control group. The sciatic nerve function index (SFI) was measured, and neuro-electrophysiology was observed; mRNA and protein expressions of NGF and MAG were detected by RT-PCR and Western blot; and histological examination was performed at 31 days after operation. ResultsRecombinant adenovirus vectors of Ad-NGF and Ad-NGF-MAG were constructed successfully. All rats survived and incision healed by first intension. The SFI, nerve conduction velocity, evoked potential amplitude, and latent period of Ad-NGF-MAG group were significantly better than those of Ad group and Ad-NGF group (P < 0.05). MAG mRNA and protein expressions of Ad-NGF-MAG group were the highest in all the groups (P < 0.05). The expressions of NGF mRNA and protein increased in Ad-NGF group and AdNGF-MAG group when compared with control group and Ad group (P < 0.05). Histological examination showed that the nerve had good continuity in control group; nerve fibers disarranged in Ad group; neurons connections formed in some nerve fibers of Ad-NGF group, but nerve fibers arrange disorderly; and the growth of the nerve were ordered and wellstructured in Ad-NGF-MAG group. ConclusionAd-NGF-MAG can effectively promote the growth of the nerve and inhibit the form of abnormal branches, facilitating the repair of sciatic nerve injury in rats.

    Release date: Export PDF Favorites Scan
  • EFFECT OF ADENOVIRUS EXPRESSING NGF ON SCIATIC NERVE INJURY IN RATS

    Objective To construct adenovirus expressing NGF (Ad-NGF) and to investigate its promotive effect on the reparation and regeneration of sciatic nerve injury in rats. Methods NGF gene sequence was cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK-293 cells, the recombinant adenoviruses-Ad-NGF underwent sequence identification. Thirty-two male SD rats weighing 180-200 g were randomly divided into 4 groups (n=8 rats per group). Sciatic nerve injury model was establ ished by disconnecting and direct suturing the right sciatic nerve in the rat. Theright gastrocnemius muscle of group A and C received Ad-NGF injection and adenovirus vector without NGF gene sequence injection, respectively, and 1 × 108 PFU/per time was given every other day for three times. Group B and D received NGF injection (200 U/d) and normal sal ine (100 ?L/d), respectively, for 3 weeks. The effect of various treatments on injured sciatic nerve was evaluated by performing sciatic nerve function index and nerve electrophysiology detections 31 days after operation. Meanwhile, the sciatic nerve in the anastomosis and at the site 1 cm distal to the anastomosis were obtained, and underwent RTPCR and Western blot analysis for detecting NGF mRNA and protein expression level in the injured sciatic nerve in the rats. Histology, immunohistochemistry, and transmission electron microscope observations were conducted. Results Ad-NGF carrying NGF gene sequence was constructed successfully and confirmed by sequence analysis. The sciatic nerve function index, nerve conduction velocity, evoked potential ampl itude, and latent period of group A was better than those of other groups (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). RT-PCR and Western blot detection: the expression levels of NGF mRNA and protein in group A were greater than those of group B, C, and D (P lt; 0.05), and no significant differences were noted among group B, C, and D (P gt; 0.05). Histology and immunohistochemistry observation showed that the regeneration of the sciatic nerve in group A was obvious superior to that of other groups. Transmission electron microscopy observation suggested there was significant difference between group A and groups B, C, and D in terms of axonal diameter of sciatic nerve cross-section, myel in sheath thickness and nerve fiber number (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). Conclusion Ad-NGF can effectively promote the repair of sciatic nerveinjury in rats, and is a new method for obtaining large amounts of NGF in the area of injured peripheral nerve.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EFFECT OF SUBCUTANEOUS IMPLANT OF PERIPHERAL NERVE ALLOGRAFT ON SCIATIC NERVE REGENERATION IN RATS

    OBJECTIVE: To study the effect of subcutaneous implant of peripheral nerve allograft on sciatic nerve regeneration in rats. METHODS: Out of 30 male Wistar rats, 6 were donors and 24 were divided randomly into 2 groups. In experimental group (group A, n = 12), a 15 mm segment of sciatic nerve harvested from donors was separately inserted into subcutaneous compartment on the right thigh; two weeks later, the segment of sciatic nerve in subcutaneous compartment was removed and transplanted into a 10 mm sciatic nerve defect of left, which was made immediately. In the control group (group B, n = 12), a 10 mm sciatic nerve defect was made and immediately repaired in situ on the left thigh. The regeneration of sciatic nerve was examined histologically (after 2, 4, 8, and 14 weeks) and electrophysiologically (after 14 weeks of operation). RESULTS: After 2 weeks of operation, the inflammatory reaction was a little ber in group A than in group B. After 4 weeks, the intensity of the inflammatory reaction was similar between two groups; some collagen fibers proliferated. After 8 weeks, the inflammatory reaction ended and the collagen fibers proliferated obviously. After 14 weeks of operation, the structure of epineurium was in integrity and there was no obvious difference in perineurium and endonurium between two groups. A large number of myelinated nerve fibers and a small number of unmyelinated nerve fibers regenerated. The structure of myelin sheath was in integrity. The number and size of regenerated axon had no significant difference between two groups(P gt; 0.05). The conduction velocity, the peak value and the latent period of motor nerve were no significant difference between two groups (P gt; 0.05). CONCLUSION: The allograft of sciatic nerve inserted into subcutaneous compartment can promote nerve regeneration.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CULTURING Schwann CELLS OF RATS BY SINGLE-ENZYME DIGESTION AND EXPLANT-CULTURE METHOD

    ObjectiveTo establish an efficient method of isolating and culturing high activity and high purity of Schwann cells, and to identify the cells at the levels of transcription and translation. MethodsThe sciatic nerves harvested from a 4-week-old Sprague Dawley rat were digested in the collagenase I for 15 minutes after dissecting, and then the explants were planted in culture flask directly. The cells were cultured and passaged in vitro, the growth state and morphological changes of the cells were observed under inverted phase contrast microscope. MTT assay was used to test the proliferation of cells and the cells growth curve was drawn. RT-PCR and immunohistochemistry staining were used to detect S100 and glial fibrillary acidic protein (GFAP) at the levels of transcription and translation, respectively. The purity of cells was caculated under microscope. ResultsAfter the digestion of collagenase I, fibroblast-like cells appeared around explants within 24 hours, with slender cell body and weak refraction. After tissues were transferred to another culture flask, a large number of dipolar or tripolar cells were seen after 48 hours, with slender ecphyma, plump cell body, and b refraction, and the cells formed colonies within 72 hours. The cells were covered with the bottom of culture flask within 48-72 hours after passaging at a ratio of 1∶2, and spiral colonies appeared. Cells showed vigorous growth and full cytoplasm after many passages. MTT assay results showed that the cells at passage 3 entered the logarithmic growth phase on the 3rd day, reached the plateau phase on the 7th day with cell proliferation, and the growth curve was “S” shape. RT-PCR results showed that the cells expressed S100 gene and GFAP gene, and immunohistochemistry staining showed that most of the cells were positively stained, indicating that the majority of cells expressing S100 protein and GFAP protein. The purity of Schwann cells was 98.37% ± 0.30%. ConclusionHigh activity and high purity of Schwann cells can be acquired rapidly by single-enzyme digestion and explant-culture method.

    Release date:2016-08-31 05:39 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REGENERATION OF SCIATIC NERVE INJURY WITH PHYSICAL THERAPY

    Objective Peri pheral nerve injury is a common cl inical disease, to study the effects of the physical therapy on the regeneration of the injured sciatic nerve, and provide a reference for cl inical treatment. Methods Sixty-four female adult Wistar rats (weighing 252-365 g) were chosen and randomly divided into 4 groups (n=16): group A, group B, groupC, and group D. The experimental model of sciatic nerve defect was establ ished by crushing the right sciatic nerve in groups B, C, and D; group A served as the control group without crushing. At 2 days after injury, no treatment was given in group B, electrical stimulation in group C, and combined physical therapies (decimeter and infrared ray) in group D. At 0, 7, 14, and 30 days after treatment, the sciatic nerve function index (SFI) and the motor nerve conduction velocity (MNCV) were measured, and morphological and transmission electron microscopy (TEM) examinations were done; at 30 days after treatment, the morphological evaluation analysis of axons was performed. Results At 0 and 7 days after treatment, the SFI values of groups B, C, and D were significantly higher than that of group A (P lt; 0.05); at 14 and 30 days after treatment, the SFI value of group D decreased significantly, no significant difference was observed between group D and group A (P gt; 0.05) at 30 days; whereas the SFI values of groups B and C decreased, showing significant difference when compared with the value of group A (P lt; 0.05). At 0, 7, and 14 days after treatment, the MNCV values of groups B, C, and D were significantly lower than that of group A (P lt; 0.05), and there were significantly differences between group B and groups C, D (P lt; 0.05); at 14 days, the MNCV value of group D was significantly higher than that of group C (P lt; 0.05); and at 30 days, the MNCV values of groups B and C were significantly lower than that of group A (P lt; 0.05), but there was no significant difference between group D and group A (P gt; 0.05). At 0 and 7 days, only collagen and l i pid were observed by TEM; at 14 and 30 days, many Schwann cells and perineurial cells in regeneration axon were observed in groups B, C, and D, especially in group D. Automated image analysis of axons showed that there was no significant difference in the number of myelinated nerve fibers, axon diameter, and myelin sheath thickness between group D and group A (P gt; 0.05), and the number of myelinated nerve fibers and axon diameter of group D were significantly higher than those of groups B and C (P lt; 0.05). Conclusion Physical therapy can improve the regeneration of the injured sciatic nerve of rats.

    Release date:2016-08-31 05:41 Export PDF Favorites Scan
  • EFFECTS OF LYCIUM BARBARUM POLYSACCHARIDE ON FORMATION OF TRAUMATIC NEUROMA AND PAIN AFTER TRANSECTION OF SCIATIC NERVE IN RATS

    Objective To investigate the effects of lycium barbarum polysaccharide (LBP) on the formation of traumatic neuroma and pain after transection of sciatic nerve in rats. Methods Forty Sprague-Dawley (SD) rats, weighing 200-220 g, half male and half female, were allocated into 2 groups randomly: LBP group and control group (n=20 per group). The right sciatic nerves were transected and 2 cm sciatic nerve were removed in all rats of the 2 groups. LBP were intraperitoneally injected in a volum of 10 mg/(kg·d) in the LBP group, while the same volum normal sal ine (NS) in the control group for 28 days. The deficiency of toenail and toe were observed to estimate the autophagy of the operated l imb. Light microscope and transmission electron microscope were used to observe the formation of traumatic neuroma aftertransection of sciatic nerve. Results Autophagy was observed in 5 rats (25%) of LBP group and in 12 rats (60%) of controlgroup at 4 weeks, showing significant difference (P lt; 0.05). Neuroma formed in 8 rats (40%) of LBP group and in 16 rats(80%) of control group, showing significant difference (P lt; 0.05). The observation of l ight microscope showed that there were unorganized growth cells in the neuroma, infiltrated muscle cells, the regeneration of axons and ensheathing cells to form small patch and funicular structure in the control group, while in the LBP group there were less prol iferation of nerve fibers with a regular arrangement. Transmission electron microscope showed that there were lots of axons in nerve tumour, more fusoid fibroblasts, more collagen fiber, and hyperplasia and degenerated myel in sheath in the control group, while in the LBP group there were less myel in sheath in the proximal end of injuring nerves, less Schwann cells and fibroblasts, and sparsed collagen fibers. Conclusion LBP can inhibit autophagy and the formation of traumatic neuroma after transection of sciatic nerve in rats.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON PROTECTION OF DORSAL ROOT GANGLIA BY NERVE GROWTH FACTOR

    Abstract In case of sciatic nerve injury, there is degeneration of neuron in the corresponding segment of spinal cord. To study whether NGF could protect the dorsal root ganglia in this situation, the following experiments were performed: 72 SD mice were divided into 2 groups. In each mouse, the sciatic nerve was sectioned at the middle of the right thigh, and then,the proximal end of the sciatic nerve was inserted into a one ended silastic tube. The NGF 0.15ml (contain 2.5S NGF 0.15mg) was injected into the tubes of the experimental group, while a equal amount of normal saline was injected into the tubes of the control group. After 1, 3, 5, 9, 20 and 30 days, 6 mice of each groupwere sacrificed respectively, and 5th to 6th lumbar segments of the spinal cords were resected for examination. By histochemical study, the activity of fluoride resistant acid phosphatase (FRAP) of each animal was detected. The results showed: (1) Excision of the sciatic nerve led to decrease of FRAP activity, it suggested that the injury of sciatic nerve could damage the dorsal root ganglia; (2) The use of exogenous NGF could protect the FRAP activity. It was concluded that NGF played an important role in protecting the dorsal root ganglia in peripheral nerve injury, in vivo.

    Release date:2016-09-01 11:11 Export PDF Favorites Scan
  • BONE MARROW DERIVED CELLS PROMOTING PRE-DEGENERATION OF SCIATIC NERVE IN VITRO /

    Objective To explore a new method for the pre-degeneration of peripheral nerve in vitro for obtaining many effective Schwann cells so as to provide a large number of seed cells for the research and application of tissue engineered nerves. Methods The bone marrow derived cells (BMDCs) from transgenic green fluorescent protein C57BL/6 mouse and the sciatic nerve segments from the C57BL/6 mouse were co-cultured to prepare the pre-degeneration of sciatic nerve in vitro (experimental group, group A), and only sciatic nerve was cultured (control group, group B). At 7 days after culture, whether BMDCs can permeate into the sciatic nerve in vitro for pre-degeneration was observed by gross and immunohistofluorescence staining. And then Schwann cells were obtained from the sciatic nerves by enzymic digestion and cultured. The cell number was counted, and then the purity of primary Schwann cells was determined using immunohistofluorescence staining and flow cytometer analysis. Results At 7 days after pre-degeneration, gross observation showed that enlargement was observed at nerve stumps, and neuroma-like structure formed; the group A was more obvious than group B. Immunohistofluorescence staining showed many BMDCs permeated into the nerve segments, with positive F4/80 staining in group A. After culture, the yield of Schwann cells was (5.59 ± 0.19) × 104 /mg in group A and (3.20 ± 0.21) × 104/mg in group B, showing significant difference (t=2.14, P=0.03). At 48 hours after inoculation, the cells had blue bipolar or tripolar cell nuclei with small size and red soma by immunohistofluorescence staining; fibroblasts were flat polygonal with clear nucleus and nucleolus, showing negative p75NTR staining; and there were few of fibroblasts in group A. The purity of Schwann cells was 88.4% ± 5.8% in group A and 76.1% ± 3.7% in group B, showing significant difference (t=2.38, P=0.04). And the flow cytometer analysis showed that the purity was 89.6% in group A and 74.9% in group B. Conclusion BMDCs can promote the pre-degeneration of peripheral nerve in vitro, and it is a new method to effectively obtain Schwann cells for tissue engineered nerve.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • COMPARISON OF COMPETENCE OF OLFACTORY GLOBULAR NERVE LAYER GLIACYTES, OLFACTORYEPITHELIAL GLIACYTES AND SC IN REPAIRING NERVE DEFECT

    Objective To compare their competence of olfactory epithel ial gl iacytes, olfactory globular nerve layer (OGNL) gl iacytes and SC in repair nerve defect of sciatic nerve, and select the best gl iacytes for repair of peri pheral nerve defect. Methods Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC were extracted from 20 female Wistar rats aged 2-3 months and cultured in vitro for 2 weeks, then purified and condensed for transplantation. Eighty adult female Wistar rats were randomized into groups A, B, C and D (n=20). The left sciatic nerves were excised 25 mm axons and retained epineuriumlumen anastomosed to proximal ends. The culture mediums, SC, OGNL gl iacytes, and olfactory epithel ial gl iacytes weretransplanted into the epineurium lumen of groups A, B, C and D, respectively. Three months postoperatively, the injured sciatic nerve regeneration was evaluated by methods of macroscopic observation, photomicroscope, transmission electron microscope, retro-marked fluorescence transportation distance, the gl ial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were assayed by immunofluorescence, and the myel in basic protein (MBP) and neurofilament (NF) protein were assayed by ELISA. Results The scores of ankle joint were (3.325 ± 0.963), (4.200 ± 1.005), (5.143 ± 0.635) and (5.950 ± 0.154) in groups A, B, C and D, respectively; showing statistically significant difference between groups (P lt; 0.05). The obse vations of gross, sections under microscope and transmission electron microscope showed the regeneration of defect nerve was best in group D, followed by group C, and group B was superior to group A. The transportation distance of retro-marked fluorescence was longest in group D, followed by group C, and group B was superior to group A. The concentrations of GFAP and NGF were largest in group D, followed by group C, and group B was superior to group A. The MBP concentrations were (9.817 ± 3.267), (12.347 ± 3.091), (14.937 ± 2.075) and (22.757 ± 0.871) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between other groups (P﹤0.05) except between group A and group B (P gt; 0.05). And the NF concentrations were (13.869 ± 5.677), (18.498 ± 3.889), (23.443 ± 2.260) and (27.610 ± 1.125) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between groups (P﹤0.05). Conclusion Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC transplantation could repair injured nerve. The competence of olfactory epithel iums is superior to the OGNL gl iacytes andSC, and the OGNL gl iacytes is better than SC.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content