The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0−10 µm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 µm to 0.82 µm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.
ObjectiveTo investigate the effectiveness of digital three-dimensional (3D) printing osteotomy guide plate assisted total knee arthroplasty (TKA) in treatment of knee osteoarthritis (KOA) patients with femoral internal implants. Methods The clinical data of 55 KOA patients who met the selection criteria between July 2021 and October 2023 were retrospectively analyzed. Among them, 26 cases combined with femoral implants were treated with digital 3D printing osteotomy guide plate assisted TKA (guide plate group), and 29 cases were treated with conventional TKA (control group). There was no significant difference in gender, age, body mass index, side, Kellgren-Lawrence classification, preoperative visual analogue scale (VAS) score, Hospital for Special Surgery (HSS) knee score, knee range of motion, and other baseline data between the two groups (P>0.05). The operation time, intraoperative blood loss, incision length, postoperative first ambulation time, surgical complications; VAS score, knee HSS score, knee range of motion before operation, at 1 week and 3 months after operation, and at last follow-up; distal femoral lateral angle, proximal tibial medial angle, hip-knee-ankle angle and other imaging indicators at last follow-up were recorded and compared between the two groups. ResultsThe operation time, incision length, intraoperative blood loss, and postoperative first ambulation time in the guide plate group were significantly lower than those in the control group (P<0.05). In the control group, there were 1 case of incision rupture and bleeding and 1 case of lower limb intermuscular venous thrombosis, which was cured after symptomatic treatment. There was no complication such as neurovascular injury, incision infection, or knee prosthesis loosening in both groups. Patients in both groups were followed up 12-26 months, with an average of 16.25 months. The VAS score, HSS score, and knee range of motion improved at each time point after operation in both groups, and further improved with time after operation, the differences were significant (P<0.05). The above indicators in the guide plate group were significantly better than those in the control group at 1 week and 3 months after operation (P<0.05), and there was no significant difference between the two groups at last follow-up (P>0.05). At last follow-up, the distal femoral lateral angle, the proximal tibial medial angle, and the hip-knee-ankle angle in the guide plate group were significantly better than those in the control group (P<0.05). Conclusion The application of digital 3D printing osteotomy guide plate assisted TKA in the treatment of KOA patients with femoral implants can simplify the surgical procedures, overcome limitations of conventional osteotomy guides, reduce surgical trauma, achieve individualized and precise osteotomy, and effectively restore lower limb alignment and knee joint function.
Objective To analyze the short-term effectiveness and safety of personalized three-dimensional (3D) printed customized prostheses in severe Paprosky type Ⅲ acetabular bone defects. Methods A retrospective analysis was conducted on 8 patients with severe Paprosky type Ⅲ acetabular bone defects and met the selection criteria between January 2023 and June 2024. There were 3 males and 5 females, with an average age of 64.6 years ranged from 56 to 73 years. All primary replacement prostheses were non-cemented, including 1 ceramic-ceramic interface, 1 ceramic-polyethylene interface, and 6 metal-polyethylene interfaces. The time from the primary replacement to the revision was 4 days to 18 years. The reasons for revision were aseptic loosening in 5 cases, revision after exclusion in 2 cases, and repeated dislocation in 1 case. The preoperative Harris score was 39.5±3.7 and the visual analogue scale (VAS) score was 7.1±0.8. The operation time, intraoperative blood loss, hospital stay, and complications were recorded. The hip function was evaluated by Harris score, and the degree of pain was evaluated by VAS score. The acetabular cup abduction angle, anteversion angle, rotational center height, greater trochanter height, and femoral offset were measured on X-ray film. Results The operation time was 95-223 minutes, with an average of 151.13 minutes. The intraoperative blood loss was 600-3 500 mL, with an average of 1 250.00 mL. The hospital stay was 13-20 days, with an average of 16.88 days. All 8 patients were followed up 2-12 months, with an average of 6.4 months. One patient had poor wound healing after operation, which healed well after active symptomatic treatment. One patient had lower limb intermuscular vein thrombosis, but no thrombosis was found at last follow-up. No serious complications such as aseptic loosening, infection, dislocation, and periprosthetic fracture occurred during the follow-up. At last follow-up, the Harris score was 72.0±6.2 and the VAS score was 1.8±0.7, which were significantly different from those before operation (t=−12.011, P<0.001; t=16.595, P<0.001). On the second day after operation, the acetabular cup abduction angle ranged from 40° to 49°, with an average of 44.18°, and the acetabular cup anteversion angle ranged from 19° to 26°, with an average of 21.36°, which were within the “Lewinneck safety zone”. There was no significant difference in the rotational center height, greater trochanter height, and femoral offset between the healthy side and the affected side (P>0.05). ConclusionThe use of personalized 3D printed customized prostheses for the reconstruction of severe Paprosky type Ⅲ acetabular bone defects can alleviate pain and enhances hip joint function, and have good postoperative prosthesis position, without serious complications and have good safety.
Objective To evaluate the effectiveness of total knee arthroplasty (TKA) using three-dimensional (3D) printing technology for knee osteoarthritis (KOA) accompanied with extra-articular deformity. Methods Between March 2013 and December 2015, 15 patients (18 knees) with extra-articular deformity and KOA underwent TKA. There were 6 males (6 knees) and 9 females (12 knees), aged 55-70 years (mean, 60.2 years). The mean disease duration was 10.8 years (range, 7-15 years). The unilateral knee was involved in 12 cases and bilateral knees in 3 cases. The clinical score was 57.44±1.06 and the functional score was 60.88±1.26 of Knee Society Score (KSS). The range of motion of the knee joint was (72.22±0.18)°. The deviation of mechanical axis of lower limb was (18.89±0.92)° preoperatively. There were 8 cases (10 knees) with extra-articular femoral deformity, 5 cases (5 knees) with extra-articular tibial deformity, and 2 cases (3 knees) with extra-articular femoral and tibial deformities. Bone models and the navigation templates were printed and the operation plans were designed using 3D printing technology. The right knee joint prostheses were chosen. Results The operation time was 65-100 minutes (mean, 75.6 minutes). The bleeding volume was 50-150 mL (mean, 90.2 mL). There was no poor incision healing, infection, or deep venous thrombosis after operation. All patients were followed up 12- 30 months (mean, 22 months). Prostheses were located in the right place, and no sign of loosening or subsidence was observed by X-ray examination. At last follow-up, the deviation of mechanical axis of lower limb was (2.00±0.29)°, showing significant difference when compared with preoperative one (t=13.120, P=0.007). The KSS clinical score was 87.50±0.88 and function score was 81.94±1.41, showing significant differences when compared with preoperative ones (t=27.553, P=0.000; t=35.551, P=0.000). The range of motion of knee was (101.94±1.42)°, showing significant difference when compared with preoperative one (t=31.633, P=0.000). Conclusion For KOA accompanied with extra-articular deformity, TKA using 3D printing technology has advantages such as individualized treatment, reducing the difficulty of operation, and achieving the satisfactory function.
ObjectiveTo solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. MethodsThe model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. ResultsBiomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384±181) N and dynamic creep of (0.74±0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370±103) N and dynamic creep of (1.48±0.49) mm, showing significant differences (t=11.617,P=0.000; t=-2.991,P=0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. ConclusionLigament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
ObjectiveTo investigate the effects of three-dimensional (3D) printed Ti6Al4V-4Cu alloy on inflammation and osteogenic gene expression in mouse bone marrow mesenchymal stem cells (BMSCs) and mouse mononuclear macrophage line RAW264.7.MethodsTi6Al4V and Ti6Al4V-4Cu alloys were prepared by selective laser melting, and the extracts of the two materials were prepared according to the biological evaluation standard of medical devices. The effects of two kinds of extracts on the proliferation of mouse BMSCs and mouse RAW264.7 cells were detected by cell counting kit 8 method. After co-cultured with mouse BMSCs for 3 days, the expression of osteogenesis- related genes [collagen type Ⅰ (Col-Ⅰ), alkaline phosphatase (ALP), Runx family transcription factor 2 (Runx-2), osteoprotegerin (OPG), and osteopontin (OPN)] were detected by real-time fluorescence quantitative PCR. After co-cultured with mouse RAW264.7 cells for 1 day, the expressions of inflammation-related genes [interleukin 4 (IL-4) and nitric oxide synthase 2 (iNOS)] were detected by real-time fluorescence quantitative PCR, and the supernatants of the two groups were collected to detect the secretion of vascular endothelial growth factor a (VEGF-a) and bone morphogenetic protein 2 (BMP-2) by ELISA. The osteogenic conditioned medium were prepared with the supernatants of the two groups and co-cultured with BMSCs for 3 days. The expressions of osteogenesis-related genes (Col-Ⅰ, ALP, Runx-2, OPG, and OPN) were detected by real-time fluorescence quantitative PCR.ResultsCompared with Ti6Al4V alloy extract, Ti6Al4V-4Cu alloy extract had no obvious effect on the proliferation of BMSCs and RAW264.7 cells, but it could promote the expression of OPG mRNA in BMSCs, reduce the expression of iNOS mRNA in RAW264.7 cells, and promote the expression of IL-4 mRNA. It could also promote the secretions of VEGF-a and BMP-2 in RAW264.7 cells. Ti6Al4V-4Cu osteogenic conditioned medium could promote the expressions of Col-Ⅰ, ALP, Runx-2, OPG, and OPN mRNAs in BMSCs. The differences were all significant (P<0.05).Conclusion3D printed Ti6Al4V-4Cu alloy can promote RAW264.7 cells to secret VEGF-a and BMP-2 by releasing copper ions, thus promoting osteogenesis through bone immune regulation, which lays a theoretical foundation for the application of metal prosthesis.
ObjectiveTo evaluate the effectiveness of high tibial osteotomy (HTO) assisted by three-dimensional (3-D) printing technology for correction of varus knee with osteoarthritis. MethodBetween January 2014 and June 2015, 16 patients (20 knees) with varus knee and osteoarthritis underwent HTO assisted by 3-D printing technology; a locking compression plate was used for internal fixation after HTO. There were 6 males and 10 females, aged 30-60 years (mean, 45.5 years). The disease duration was 1-10 years (mean, 6.2 years). The unilateral knee was involved in 12 cases and bilateral knees in 4 cases. According to Koshino's staging system, 3 knees were classified as stage I, 7 knees as stage Ⅱ, 8 knees as stage Ⅲ, and 2 knees as stage IV. Preoperative Hospital for Special Surgery (HSS) knee score was 63.8±2.2; the femorotibial angle was (184.8±2.9) °; and Insall-Salvati index was 1.03±0.13. ResultsAll the wounds healed primarily, and no complication of infection, osteofacial compartment syndrom, or deep vein thrombosis was observed. All patients were followed up 6-18 months (mean, 12.6 months). Personal paralysis was observed in 1 case (1 knee), and was cured after expectant treatment. Bone union time was 2.7-3.4 months (mean, 2.9 months). At 6 months after operation, the femorotibial angle was (173.8±2.0) °, showing significant difference when compared with preoperative one (t=11.70, P=0.00) ; Insall-Salvati index was 1.04±0.12, showing no significant difference when compared with preoperative one (t=-0.20, P=0.85) ; and HSS knee score was significantly increased to 88.9±3.1 (t=-25.44, P=0.00) . At last follow-up, the results were excellent in 13 knees, good in 6 knees, fair in 1 knee, and the excellent and good rate was 95%. Conclusions3-D printing cutting block can greatly improve the accuracy of HTO, avoid repeated X-ray and multiple osteotomy, shorten the operation time, and ensure better effectiveness for correction of varus knee with osteoarthritis.
ObjectiveTo explore the effectiveness of excision and reconstruction of bone tumor by using operation guide plate made by variety of three-dimensional (3-D) printing techniques, and to compare the advantages and disadvantages of different 3-D printing techniques in the manufacture and application of operation guide plate. MethodsBetween September 2012 and January 2014, 31 patients with bone tumor underwent excision and reconstruction of bone tumor by using operation guide plate. There were 19 males and 12 females, aged 6-67 years (median, 23 years). The disease duration ranged from 15 days to 12 months (median, 2 months). There were 13 cases of malignant tumor and 18 cases of benign tumor. The tumor located in the femur (9 cases), the spine (7 cases), the tibia (6 cases), the pelvis (5 cases), the humerus (3 cases), and the fibula (1 case). Four kinds of 3-D printing technique were used in processing operation guide plate:fused deposition modeling (FDM) in 9 cases, stereo lithography appearance (SLA) in 14 cases, 3-D printing technique in 5 cases, and selective laser sintering (SLS) in 3 cases; the materials included ABS resin, photosensitive resin, plaster, and aluminum alloy, respectively. Before operation, all patients underwent thin layer CT scanning (0.625 mm) in addition to conventional imaging. The data were collected for tumor resection design, and operation guide plate was designed on the basis of excision plan. Preoperatively, the operation guide plates were made by 3-D printing equipment. After sterilization, the guide plates were used for excision and reconstruction of bone tumor. The time of plates processing cycle was recorded to analyse the efficiency of 4 kinds of 3-D printing techniques. The time for design and operation and intraoperative fluoroscopy frequency were recorded. Twenty-eight patients underwent similar operations during the same period as the control group. ResultsThe processing time of operation guide plate was (19.3±6.5) hours in FDM, (5.2±1.3) hours in SLA, (8.6±1.9) hours in 3-D printing technique, and (51.7±12.9) hours in SLS. The preoperative design and operation guide plate were successfully made, which was used for excision and reconstruction of bone tumor in 31 cases. Except 3 failures (operation guide plate fracture), the resection and reconstruction operations followed the preoperative design in the other 28 cases. The patients had longer design time, shorter operation time, and less fluoroscopy frequency than the patients of the control group, showing significant differences (P<0.05). The follow-up time was 1-12 months (mean, 3.7 months). Postoperative X-ray and CT showed complete tumor resection and stable reconstruction. Conclusion3-D printing operation guide plates are well adapted to the requirements of individual operation for bone tumor resection and reconstruction. The 4 kinds of 3-D printing techniques have their own advantages and should be chosen according to the need of operation.
ObjectiveTo review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. MethodsThe recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. ResultsCurrently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. Conclusion3-D printing technique is a promising technique in clinical application.
Objective A prospective study was conducted to investigate the feasibility and effectiveness of three-dimensional printed in vitro guide plates assisted hip arthroscopy in the treatment of Cam-type femoroacetabular impingement (FAI). Methods The clinical data of 25 patients with Cam-type FAI who met the selection criteria between December 2016 and September 2022 were collected. There were 13 males and 12 females with an average age of 42 years (range, 19-66 years). The disease duration ranged from 3 to 120 months, with an average of 22.2 months. The preoperative range of internal rotation-external rotation was (28.70±4.50)°, α angle was (69.04±0.99)°, visual analogue scale (VAS) score was 6.5±0.2, and modified Harris hip score (HHS) was 50.5±0.7. All patients were treated with hip arthroscopy assisted by three-dimensional printed in vitro guide plate. The occurrence of complications was observed postoperatively, α angle of the affected hip joint was measured on Dunn X-ray film, and the glenoid labrum injury was observed by MRI. The percentage of overlap between the Cam plasty area and the preoperative simulated grinding area was calculated by three-dimensional CT+reconstruction. The effectiveness was evaluated by VAS score and modified HHS score. ResultsPostoperative dorsalis pedis numbness occurred in 1 case, and the symptoms disappeared after 1 month of conventional drug treatment such as neurotrophy. Two cases of perineal skin injury occurred, and healed after symptomatic treatment. There was no male erectile dysfunction, deep incision infection, pulmonary embolism, or other serious complications occurred. The percentage of overlap between the Cam plasty area and the preoperative simulated grinding area was 81.6%-95.3%, with an average of 89.8%. All 25 patients were followed up 6-12 months, with an average of 8 months. At last follow-up, the range of internal rotation-external rotation was (40.10±2.98)°, α angle was (43.72±0.84)°, VAS score was 1.8±0.2, and the modified HHS score was 72.1±1.3, which significantly improved when compared with preoperative ones (P<0.05). ConclusionThe treatment of Cam-type FAI with three-dimensional printed in vitro guide plates assisted hip arthroscopy is safe and feasible, and can achieve good effectiveness.