Objective To investigate the significance of three dimensional (3D) visualization and virtual surgery system in liver transplantation surgery. Methods Two patients suffered from cholangiolithiasis were scanned by 64 slice helical-CT on livers and the data were collected. Man-made segmentation and true up on the image from the data were carried out. 3D moulds of the liver and the intrahepatic vessels were reconstructed by VTK software respectively. And then, the moulds were imported to the FreeForm Modeling System for modifying. At last, auxiliary partial orthotopic liver transplantation was simulated with the force-feedback equipment (PHANTOM). Results ①It had greatly verisimilar image for the reconstructed 3D liver moulds with artery, vein, portal vein and bile duct; By liver seeing through, it had high fidelity and b 3D effect for the intrahepatic artery, vein, portal vein and bile duct, and their spatial disposition and course and correlationship were shown clearly. ②In the virtual surgery system, the virtual scalpel could be manipulated on 3D liver mould with PHANTOM. The simulating effect was the same as the clinic operation for auxiliary partial orthotopic liver transplantation. Plane visualization of hepatic resection and intrahepatic vessel cutting was achieved by adjusting the transparency of the resection part. Life-like could be felt and power feeling could be touched during virtul operation. Conclusion ①The visualized liver mould reconstructed is 3D and verisimilar, and it is helpful to design reasonable scheme for liver transplantation. ②It not only can improve the surgical effect and decrease the surgical risk, but also can reduce the complications and enhance the communication between doctor and patient through designing surgical plan and demonstrating visualized operation before surgery. ③Visualized liver transplantation surgery is helpful for medical workers to train and study.
ObjectiveTo study the clinical value of digital technology assisted minimally invasive surgery in diagnosis and treatment of hepatolithiasis. MethodsThe image data of 64-slice spiral CT scanning were obtained from five patients of complicated hepatolithiasis and introduced into medical image three-dimensional visualization system (MI-3DVS) for three-dimensional reconstruction. On the basis of the data of three-dimensional reconstruction, minimally invasive surgical planning of preoperation was made to obtain reasonable hepatectomy and cholangiojejunostomy, and then preoperative emulational surgery was carried out to minimize the extent of tissue damage and provide guidance to actual operation. ResultsLiver, biliary system, stone, blood vessel, and epigastric visceral organ were successfully reconstructed by MI-3DVS, which showed clearly size, number, shape, and space distribution of stone, and location, degree, length, and space distribution of biliary stricture, and anatomical relationship of ducts and vessels. The results of three-dimensional reconstruction were successfully confirmed by actual operation, which was in accordance with emulational surgery. There was no operative complication. No retained stone in internal and external bile duct was found by Ttube or other supporting tube cholangiography on one month after operation. ConclusionThree-dimensional digitizing reconstruction and individual emulational surgery have important significance in diagnosis and treatment of complicated hepatolithiasis by minimally invasive technique.
【Abstract】ObjectiveTo evaluate the value of MR imaging with a contrast-enhanced multi-phasic isotropic volumetric interpolated breath-hold examination (VIBE) in diagnosis of primary liver carcinoma. MethodsThirty-two consecutive patients with surgical-pathologically confirmed 42 foci of primary carcinoma of liver underwent comprehensive MR examination of the upper abdomen, routine two-dimensional (2D) T1WI and T2WI images were acquired before administration of Gd-DTPA for contrast enhancement. Then, contrast-enhanced multi-phasic VIBE was acquired followed by 2D T1WI images. The lesion appearances on hepatic arterial, portal venous and equilibrium phases of VIBE sequence were carefully observed along with delineation of hepatic arterial and portal venous structures. The lesion detection rates and lesion characterization ability were compared among various MR sequences. Results33(78.6%), 30(71.4%), 38(90.5%) and 42(100%) foci were displayed respectively on T2WI, non-enhanced T1WI, enhanced T1WI and enhanced 3D-VIBE images (P<0.05). The hepatic arterial anatomy of 30 patients (93.8%) and the portal venous structure of 31 patients (96.9%) were clearly depicted on enhanced 3D-VIBE images. Using MIP and MPR reconstruction techniques, the feeding arteries of 14 foci and draining vein of 12 foci were clearly displayed.ConclusionHigh-quality 3D-VIBE images are not only better than 2D images in lesion detection and characterization for primary liver carcinoma, but also able to provide much more information about hepatic vascular anatomy.
Objective To study digitize design of custom-made radial head prosthesis and to verify its matching precision by the surgery of preoperative three-dimensional (3-D) virtual replacement. Methods Six healthy adult volunteers (3 males and 3 females, aged 25-55 years with an average of 33 years) received slice scan of bilateral elbow by Speed Light 16-slice spiral CT. The CT Dicom data were imported into Mimics 10.0 software individually for 3-D reconstruction image, and the left proximal radial 3-D image was extracted, the mirror of the image was generated and it was split into 2 pieces: the head and the neck. The internal diameter and the length of the radial neck were obtained by Mimics 10.0 software measurement tools. In Geomagic Studio 12 software, the radial head was simulated to cover the cartilage surface (1 mm thickness) and generated to an entity. In UG NX 8.0 software, the stem of prosthesis was designed according to the parameters above and assembled head entity. Each custom-made prosthesis was performed and verified its matching precision by the surgery of preoperative 3-D virtual replacement. Results Comparing the morphology of 6 digitize custom-made prostheses with ipsilateral radial heads by the 3-D virtual surgery, the error was less than 1 mm. The radial head prosthesis design on basis of the contralateral anatomy was verified excellent matching. Conclusion The 3-D virtual surgery test and the digitized custom-made radial head prosthesis will be available for clinical accurate replacement.
ObjectiveTo further understand the anatomical characteristics and rules of left upper lingual pulmonary artery.MethodsCT data of 120 patients (82 males, 38 females, median age of 65 years ranging 36-78 years) with pulmonary nodules from December 2018 to August 2020 in our hospital were retrospectively analyzed. The anatomic characteristics of the lingual segment of the upper left lung were analyzed by three-dimensional reconstruction. ResultsMediastinal lingual artery appeared in 34 of the 120 patients, accounting for 28.4%. There were 26 patientsof mixed mediastinal/interlobar type, 8 patients of pure mediastinal lingual artery, and 92.3% (24/26) mixed mediastinal/interlobar type blood vessel contained A4b. Fifty-eight (58/120, 48.3%) patients had interlobar type A4+5 type, the rest were two-branches type. And 22 patients of A4 and A5 type accounted for the most two-branches type (22/28, 78.6%). The single-branch type was located at the distal end of A6 in 54 (54/58, 93.1%) patients, originated from the proximal end of A6 in 4 patients, and originated from the basilar artery in 6 patients. The two-branches type was at the distal end of A6 accounting for 50.0% (14/28).ConclusionMediastinal lingual artery is more common than expected, accounting for 28.4%, among which mixed lingual artery is more prevalent, usually located in the first pulmonary trunk, and mostly follows the principle of proximity to supply relevant lung tissues. The location of the interlobar branches in the pulmonary trunk can be at the distal or proximal end of A6, care should be taken to avoid damaging adjacent structures.
Objective To explore the guiding significance of preoperative 3D reconstruction for pulmonary nodule location and thoracoscopic surgical method selection in lung cancer patients. Methods The clinical data of the patients with preoperative 3D reconstruction in our China-Japan Friendship Hospital between January and November 2023 were retrospectively analyzed. Preoperative surgical planning was performed using 3D reconstruction. Different surgical procedure, including wedge resection, segmentectomy, lobectomy, or combined surgical procedure were performed based on tumor location, size and distance from the pleura. Results A total of 115 patients were included with 45 males and 70 females, at an average age of 25-84 (58.29±11.36) years and successfully completed the operation. Fifty-five (47.8%) patients' nodule diameter was tangent cross-section, among whom twenty-five (21.7%) patients of nodules crossed sections. There were 21 patients of wedge resection in the outer 1/3 nodules of CT, which had shorter operation time and less cost (P<0.001) and less intraoperative bleeding (P=0.019). For the crossing sections or edge crossing sections nodules of the middle and inner of CT, 6 patients were of simple pulmonary segmentectomy, 8 patients of combined with sub-segmentectomy, 7 patients of combined segmentectomy, 5 patients of lobectomy, and 3 patients of wedge resection. Conclusion The proportion of cross-segment pulmonary nodules is relatively high. For the outer 1/3 nodules of CT, compared with pulmonary segmental resection combined with adjacent lung tissue resection, wedge resection can also ensure sufficient surgical margin, and the middle and inner 1/3 nodules of CT need to be combined with adjacent pulmonary tissue resection to ensure the surgical edge.
Objective To study the feasibility of virtual intercondylar notchplasty by applying MRI two-dimensional (2D) images to reconstruct three-dimensional (3D) images and measure the size of intercondylar notch. Methods Thirty healthy volunteers who had no knee joint disease and surgery history were selected. There were 15 females and 15 males with an age range of 20-30 years, weight range of 45-74 kg, and height range of 150-185 cm. They were divided into male group and female group, and the knees of each group were divided into 2 subgroups (the left group and right group). MRI scan of the left and right knees was performed, and the 2D images of MRI were imported into Mimics10.01 medical image control system for 3D reconstruction. The related anatomical data as follows were measured from the 3D digital model and analyzed by statistical software: notch width (NW), condylar width (CW), and notch width index (NWI). Then the 3D knee images of patients with anterior cruciate ligament (ACL) injury were collected between January and March 2010, and 4 patients with narrow intercondylar notch (NWI≤0.2) were selected for reconstructing the 3D model of the knee and simulating the intercondylar notch plasty. Then, the volume of osteotomy in 3D model was calculated and applied in the ACL reconstruction surgery, and whether the graft had impingement with intercondylar notch or not was evaluated. Results There were significant differences in NW and CW between male group and female group (P≤lt;≤0.05), but no significant difference was found in the NWI (P≤gt;≤0.05). And there was no significant difference in NW, CW, and NWI between the left and right knees both in male group and female group (P≤gt;≤0.05). After ACL reconstruction and intercondylar notchplasty, the shape of intercondylar notch became normal (NWI≤gt;≤0.22), no impingement occurred between the graft and intercondylar notch under arthroscopy within 3-month follow-up. Conclusion The shape of intercondylar notch of 3D model based on MRI 2D images is similar to the real intercondylar notch. NWI is one of important indexes which can reflect the narrow level of intercondylar notch. The virtual intercondylar notchplasty may provide preoperative plan and guidence for ACL reconstruction operation to avoid the impingement between graft and intercondylar notch after surgery.
ObjectiveTo evaluate the application value of three-dimensional (3D) reconstruction in preoperative surgical diagnosis of new classification criteria for lung adenocarcinoma, which is helpful to develop a deep learning model of artificial intelligence in the auxiliary diagnosis and treatment of lung cancer.MethodsThe clinical data of 173 patients with ground-glass lung nodules with a diameter of ≤2 cm, who were admitted from October 2018 to June 2020 in our hospital were retrospectively analyzed. Among them, 55 were males and 118 were females with a median age of 61 (28-82) years. Pulmonary nodules in different parts of the same patient were treated as independent events, and a total of 181 subjects were included. According to the new classification criteria of pathological types, they were divided into pre-invasive lesions (atypical adenomatous hyperplasia and and adenocarcinoma in situ), minimally invasive adenocarcinoma and invasive adenocarcinoma. The relationship between 3D reconstruction parameters and different pathological subtypes of lung adenocarcinoma, and their diagnostic values were analyzed by multiplanar reconstruction and volume reconstruction techniques.ResultsIn different pathological types of lung adenocarcinoma, the diameter of lung nodules (P<0.001), average CT value (P<0.001), consolidation/tumor ratio (CTR, P<0.001), type of nodules (P<0.001), nodular morphology (P<0.001), pleural indenlation sign (P<0.001), air bronchogram sign (P=0.010), vascular access inside the nodule (P=0.005), TNM staging (P<0.001) were significantly different, while nodule growth sites were not (P=0.054). At the same time, it was also found that with the increased invasiveness of different pathological subtypes of lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. Meanwhile, nodule diameter and the average CT value or CTR were independent risk factors for malignant degree of lung adenocarcinoma.ConclusionImaging signs of lung adenocarcinoma in 3D reconstruction, including nodule diameter, the average CT value, CTR, shape, type, vascular access conditions, air bronchogram sign, pleural indenlation sign, play an important role in the diagnosis of lung adenocarcinoma subtype and can provide guidance for personalized therapy to patients in clinics.
Objective To employ spinal virtual surgery system (SVSS) for preoperative planning of thoracolumbar pedicle screw fixation, and to establ ish the measurement method for pedicle screw-related parameters. Methods Eight thoracicand lumbar spine specimens (T11-L3) were selected. First of all, SVSS was used for the preoperative planning of pedicle screw and the parameters of both sides of pedicle were measured in every vertebral segment, including angle of axial view (Aa), angle of sagittal view (As), x-direction entrance (XE), total pedicle length of axial view (TLa), total pedicle length of sagittal view (TLs), pedicle height (PH), pedicle width (PW), and pedicle spongy width (PSW). Then the corresponding parameters of the right and left pedicle screws of the specimens were measured actually. Finally, its accuracy was verified by comparing the data by virtual measurement and actual measurement. Results There was no significant difference in the parameters of virtual measurement (Aa, As, TLa, TLs, XE, PW, PSW, and PH) and actual measurement (Aa, As, TLa, XE, PW, PSW, and PH) between the right and left sides (P gt; 0.05). Except XE of the L3 vertebral segment and PSW of T11 and T12 vertebral segments (P lt; 0.05), the differences in other parameters of other segments were not significant (P gt; 0.05). Conclusion After statistical analysis and comparison, the feasibil ity of preoperative planning of thoracolumbar pedicle screw fixation and the accuracy of the measurement of the SVSS is verified.
Objective To quantitatively evaluate the effect of 2 types of pressures induced injury by using threedimensional (3D) reconstruction of rats loaded tibial is anterior muscle from two-dimensional (2D) image of serial histological sections. Methods Twenty female or male Sprague Dawley rats, aged 10-12 weeks and weighing 280-300 g, were randomlydivided into experimental group (n=10) and control group (n=10). The random side of tibial is anterior muscle was givenintermittent gradient (8.0-21.3 kPa) and sustained (13.3 kPa) pressure in 0.12 cm2 area in experimental group and controlgroup, respectively; the experiment was terminated and the general condition of rats was observed after 3 cycles, and a single cycle included 2 hours of compression and 30 minutes of release. The general observations of pressed skin and tibial is anterior muscle were done after 24 hours of pressure rel ief, and the tibial is anterior muscle was harvested integrally from the loaded side, then made into interval 4 μm serial sections. After HE staining, 2D images were obtained. Necrosis and injury areas were distinguished by Image Pro Plus (IPP) 6.0 software and image registration was conducted by Photoshop 8.0.1 after 2D panorama images acquired by digital microscope (× 40) and IPP mosaic software. 3D reconstruction was establ ished via data processing using Mimics 10.1 software so as to get the volume, the surface area, and 3D images of the whole piece of tibial is anterior muscle and injury areas respectively. Results All rats of 2 groups survived till experiment terminated and no skin ulcers occurred after 24 hours. Edema and indentation were observed on press side skin and tibial is anterior muscles of 2 groups, fadeless maroon area was observed in control group. A total of 994 sl ices were obtained from 20 samples of tibial is anterior muscles. 3D images suggested that injury of control group was severe, which penetrated the whole piece of tibial is anterior muscle and expandedalong the tibia bony prominence. By contrast, injury of experimental group was less, but had similar width to the contact surface of indentor. There was no significant difference in the volume and the surface area of tibial is anterior muscle between 2 groups (P gt; 0.05), while the injury volume and the injury surface area were significantly smaller in experimental group than in control group (P lt; 0.05). Conclusion 3D reconstruction is an effective method to quantitatively evaluate pathological changes inside the integrity tissue and can provide the visual basis for the mechanical property distributed in the loaded muscle. Intermittent gradient pressure can reduce deep tissue injury.