In recent years, epileptic seizure detection based on electroencephalogram (EEG) has attracted the widespread attention of the academic. However, it is difficult to collect data from epileptic seizure, and it is easy to cause over fitting phenomenon under the condition of few training data. In order to solve this problem, this paper took the CHB-MIT epilepsy EEG dataset from Boston Children's Hospital as the research object, and applied wavelet transform for data augmentation by setting different wavelet transform scale factors. In addition, by combining deep learning, ensemble learning, transfer learning and other methods, an epilepsy detection method with high accuracy for specific epilepsy patients was proposed under the condition of insufficient learning samples. In test, the wavelet transform scale factors 2, 4 and 8 were set for experimental comparison and verification. When the wavelet scale factor was 8, the average accuracy, average sensitivity and average specificity was 95.47%, 93.89% and 96.48%, respectively. Through comparative experiments with recent relevant literatures, the advantages of the proposed method were verified. Our results might provide reference for the clinical application of epilepsy detection.
The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.
This paper proposes a motor imagery recognition algorithm based on feature fusion and transfer adaptive boosting (TrAdaboost) to address the issue of low accuracy in motor imagery (MI) recognition across subjects, thereby increasing the reliability of MI-based brain-computer interfaces (BCI) for cross-individual use. Using the autoregressive model, power spectral density and discrete wavelet transform, time-frequency domain features of MI can be obtained, while the filter bank common spatial pattern is used to extract spatial domain features, and multi-scale dispersion entropy is employed to extract nonlinear features. The IV-2a dataset from the 4th International BCI Competition was used for the binary classification task, with the pattern recognition model constructed by combining the improved TrAdaboost integrated learning algorithm with support vector machine (SVM), k nearest neighbor (KNN), and mind evolutionary algorithm-based back propagation (MEA-BP) neural network. The results show that the SVM-based TrAdaboost integrated learning algorithm has the best performance when 30% of the target domain instance data is migrated, with an average classification accuracy of 86.17%, a Kappa value of 0.723 3, and an AUC value of 0.849 8. These results suggest that the algorithm can be used to recognize MI signals across individuals, providing a new way to improve the generalization capability of BCI recognition models.