west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "U-net" 2 results
  • A computed tomography image segmentation algorithm for improving the diagnostic accuracy of rectal cancer based on U-net and residual block

    As an important basis for lesion determination and diagnosis, medical image segmentation has become one of the most important and hot research fields in the biomedical field, among which medical image segmentation algorithms based on full convolutional neural network and U-Net neural network have attracted more and more attention by researchers. At present, there are few reports on the application of medical image segmentation algorithms in the diagnosis of rectal cancer, and the accuracy of the segmentation results of rectal cancer is not high. In this paper, a convolutional network model of encoding and decoding combined with image clipping and pre-processing is proposed. On the basis of U-Net, this model replaced the traditional convolution block with the residual block, which effectively avoided the problem of gradient disappearance. In addition, the image enlargement method is also used to improve the generalization ability of the model. The test results on the data set provided by the "Teddy Cup" Data Mining Challenge showed that the residual block-based improved U-Net model proposed in this paper, combined with image clipping and preprocessing, could greatly improve the segmentation accuracy of rectal cancer, and the Dice coefficient obtained reached 0.97 on the verification set.

    Release date:2022-04-24 01:17 Export PDF Favorites Scan
  • Full-size diffusion model for adaptive feature medical image fusion

    To address issues such as loss of detailed information, blurred target boundaries, and unclear structural hierarchy in medical image fusion, this paper proposes an adaptive feature medical image fusion network based on a full-scale diffusion model. First, a region-level feature map is generated using a kernel-based saliency map to enhance local features and boundary details. Then, a full-scale diffusion feature extraction network is employed for global feature extraction, alongside a multi-scale denoising U-shaped network designed to fully capture cross-layer information. A multi-scale feature integration module is introduced to reinforce texture details and structural information extracted by the encoder. Finally, an adaptive fusion scheme is applied to progressively fuse region-level features, global features, and source images layer by layer, enhancing the preservation of detail information. To validate the effectiveness of the proposed method, this paper validates the proposed model on the publicly available Harvard dataset and an abdominal dataset. By comparing with nine other representative image fusion methods, the proposed approach achieved improvements across seven evaluation metrics. The results demonstrate that the proposed method effectively extracts both global and local features of medical images, enhances texture details and target boundary clarity, and generates fusion image with high contrast and rich information, providing more reliable support for subsequent clinical diagnosis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content