west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YAN Xinjian" 4 results
  • Research progress on the relationship between gut microbiome dysbiosis, microbial metabolites and aortic disease

    [Abstract]The pathogenesis of aortic disease is not fully understood. Gut dysbiosis may play a role in the occurrence and development of aortic diseases. Several studies showed that the diversity of microbiota in abdominal aortic aneurysms significantly decreases and is correlated with the diameter of the aneurysm. Characteristic microbial communities associated with abdominal aortic aneurysm, such as Roseburia, Bifidobacterium, Ruminococcus, Akkermansia have been found in human and animal studies. The gut microbiota of patients with aortic dissection varies greatly. Characteristic microbial communities like Lachnospiraceae and Ruminococcus present a potential impact on the pathogenesis of aortic dissection. Bifidobacterium may be associated with Takayasu arteritis and thoracic aortic aneurysm. The gut microbiota affects the physiological functions of the host by synthesizing bioactive metabolites, which causes aortic diseases, mainly involving metabolites such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), tryptophan, and short chain fatty acids. More and more evidence supports the causal relationship between gut microbiota dysbiosis and aortic disease. Clarifying abnormal changes in gut microbiota may provide clues for finding potential therapeutic targets.

    Release date: Export PDF Favorites Scan
  • Incidence of spinal cord injury in patients with acute type A aortic dissection after expanding the landing zone of frozen elephant trunk: A retrospective study in a single center

    ObjectiveTo assess whether expanding the landing zone of frozen elephant trunk (FET) increases the risk of spinal cord injury in patients with acute type A aortic dissection. MethodsPatients with acute type A aortic dissection who were treated in Guangdong Provincial People’s Hospital from 2017 to 2020 were collected. They were divided into two groups according to the landing zone of FET by the image diagnosis of postoperative chest X-ray or total aorta CT angiography, including a Th9 group which defined as below the eighth thoracic vertebral level, and a Th8 group which was defined as above or equal to the eighth thoracic vertebral level. Using the propensity score matching (PSM) method, the preoperative and intraoperative data of two groups were matched with a 1∶2 ratio. The prognosis of the two groups after PSM was analyzed. Results Before PSM, 573 patients were collected, including 58 patients in the Th9 group and 515 patients in the Th8 group. After PSM, 174 patients were collected, including 58 patients in the Th9 group (46 males and 12 females, with an average age of 47.91±9.92 years), and 116 patients in the Th8 group (93 males and 23 females, with an average age of 48.01±9.53 years). There were 8 patients of postoperative spinal cord injury in the two groups after PSM, including 5 (4.31%) patients in the Th8 group and 3 (5.17%) patients in the Th9 group (P=0.738). In the Th8 group, 2 patients had postoperative transient paresis and recovered spontaneously after symptomatic treatment, and 1 patient had postoperative paraplegia with cerebrospinal fluid drainage. After 3 days, the muscle strength of both lower limbs gradually recovered after treatment. There was no statistical difference in complications between the two groups (P>0.05). ConclusionExpanding the landing zone of FET does not increase the risk of spinal cord injury in patients with acute type A aortic dissection. However, the sample size is limited, and in the future, multicenter large-scale sample size studies are still needed for verification

    Release date: Export PDF Favorites Scan
  • Pulmonary artery reconstruction to repair infant isolated unilateral absence of pulmonary artery: A retrospective cohort study in a single center

    Objective To confirm the changes of pulmonary artery pressure, neo pulmonary artery stenosis and reoperation in children with unilateral absence of pulmonary artery (UAPA) undergoing pulmonary artery reconstruction. Methods The clinical data of the infants with UAPA undergoing pulmonary artery reconstruction in our hospital from February 19, 2019 to April 15, 2021 were analyzed. Changes in pulmonary artery pressure, neo pulmonary artery stenosis and reoperation were followed up. Results Finally 5 patients were collected, including 4 males and 1 female. The operation age ranged from 13 days to 2.7 years. Cardiac contrast-enhanced CT scans were performed in all children, and 2 patients underwent pulmonary vein wedge angiography to confirm the diagnosis and preoperative evaluation. Preoperative transthoracic echocardiography and intraoperative direct pulmonary arterial pressure measurement indicated that all 5 children had pulmonary hypertension, with a mean pulmonary arterial pressure of 31.3±16.0 mm Hg. Pulmonary arterial pressure decreased immediately after pulmonary artery reconstruction to 16.8±4.2 mm Hg. The mean follow-up time was 18.9±4.7 months. All 5 patients survived during the follow-up period, and 1 patient had neo pulmonary artery stenosis or even occlusion and was re-operated. Conclusion Pulmonary artery reconstruction can effectively alleviate the pulmonary hypertension in children with UAPA. The patency of the neo pulmonary artery should be closely followed up after surgery, and re-pulmonary angioplasty should be performed if necessary.

    Release date: Export PDF Favorites Scan
  • Right ventricular-pulmonary artery connection for palliative treatment of pulmonary atresia with ventricular septal defect in children: A single-center retrospective study

    ObjectiveTo compare the benefits and drawbacks of primary patch expansion versus pericardial tube right ventricular-pulmonary artery connection in patients diagnosed with pulmonary atresia with ventricular septal defect (PA/VSD). MethodsA retrospective study was conducted on patients diagnosed with PA/VSD who underwent primary right ventricular-pulmonary artery connection surgery at our center between 2010 and 2020. Patients were categorized into two groups based on the type of right ventricular-pulmonary artery connection: a pericardial tube group and a patch expansion group. Clinical data and imaging findings were compared between the two groups. ResultsA total of 51 patients were included in the study, comprising 31 males and 20 females, with a median age of 12.57 (4.57, 49.67) months. The pericardial tube group included 19 patients with a median age of 17.17 (7.33, 49.67) months, while the patch expansion group consisted of 32 patients with a median age of 8.58 (3.57, 52.72) months. In both groups, the diameter of pulmonary artery, McGoon index, and Nakata index significantly increased after treatment (P<0.001). However, the pericardial tube group exhibited a longer extracorporeal circulation time (P<0.001). The reoperation rate was notably high, with 74.51% of patients requiring further surgical intervention, including 26 (81.25%) patients in the patch expansion group and 12 (63.16%) patients in the pericardial tube group. No statistical differences were observed in long-term cure rates or mortality between the two groups (P>0.005). Conclusion In patients with PA/VSD, both patch expansion and pericardial tube right ventricular-pulmonary artery connection serve as effective initial palliative treatment strategies that promote pulmonary vessel development and provide a favorable foundation for subsequent radical operations. However, compared to the pericardial tube approach, the patch expansion technique is simpler to perform and preserves some intrinsic potential for pulmonary artery development, making it the preferred procedure.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content