检测结直肠癌患者血清巨噬细胞集落刺激因子(M-CSF)的含量并探讨其临床意义。方法:采用酶联免疫吸附分析法(ELISA)对62例经病理证实的术前结直肠癌患者、40例结直肠良性病患者和40例健康体检者血清M-CSF水平进行检测。结果:结直肠癌患者血清M-CSF水平明显高于结直肠良性病患者和健康体检者(Plt;0.01);结直肠癌患者血清M-CSF水平与肿瘤分期、淋巴结转移及远处转移有关(Plt;0.05),与性别、年龄、分化程度不相关(Pgt;0.05)。结论:M-CS与结直肠癌的肿瘤分期、淋巴结转移及远处转移有关,可能是一个判断结直肠癌预后的生物学指标。
Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.
Objective To review and summarize the latest development of the therapy for the Duchenne muscular dystrophy (DMD). Methods Therecentlypublished articles related to the therapies for DMD were extensively reviewed and briefly summarized. Results The therapeutic approaches for DMD included the gene therapy, the cell therapy, and the pharmacological therapy. The gene therapy and the cell therapy were focused on the treatment for the cause of DMD by the delivery of the missing gene, the modification of the mutated gene, and the transfer of the normal cells including the stem cells, while the pharmacological therapy dealt with the downstream events caused by the dystrophin gene defect, slowed down the pathologic progress of DMD, and improved the DMD patient’s life quality and life span, by medication and other factor treatments. Conclusion There is still no cure for DMD because of various difficulties in replacing or repairing thedefected gene and of the multifaceted nature of the severe symptoms. Therefore,it is imperative for us to find out a more effective treatment that can solve these problems.
目的:探讨开胸心脏瓣膜替换术后胸壁瘘及慢性化脓性肋软骨炎的处理方法。方法:对单根的肋软骨炎并胸壁瘘者,在压痛最明显处直接切除受累的肋软骨及窦道组织;对伴瘘的胸部多根肋软骨炎,可在经胸壁相对正常处切开,建立以远离感染部位为蒂的开放胸部皮瓣,经瘘口加压注入美蓝使受累的肋软骨及坏死筋膜染色,沿染色部完整切除受累的肋软骨及筋膜、瘘管周围组织;在手术创面皮瓣下置放盆式多孔引流管,术后持续低负压吸引,选用敏感抗生素。结果:本组3例,术后6天拨管,10天后伤口愈合,效果良好。结论:经正常皮肤切口入路,建立开放胸壁皮瓣,彻底清除感染坏死的肋软骨及瘘管周围组织是治疗开胸心脏换瓣术后胸壁瘘及慢性化脓性肋软骨炎的可靠方法。
Objective To develop a new tissue engineering bone material which has an antiinfective function. Methods Collagen loaded bio-derived bone material was made by using type I collagen and allograft bone. WO-1was absorbed to collagen loaded bio-derived bone, then the morphological feature of the new bone material was observed by scanning electronic microscopy.3 H tetracycline was diluted by WO-1 solution, and was absorbed to collagen loaded bio-derived bone,then the releasing kinetics of WO-1 was detected by 3 Htetracycline in vitro. WO-1 bioderived bone material was grafted into a culturemedium with staphylococcus aureus, escherichia coli, and pseudomonas aeruginosato observe its bacteriostasis ability. WO-1 bio-derived bone material was grafted into radius of defected rabbits, the concentration of WO-1 was detected onthe 9th, 16th, 23th, and 30th day byHLPC in blood, in bone and in muscle. The bacteriostasis ability of WO-1 loaded bio-derived bone was tested in vitro and in vivo. Results WO-1 loaded bioderived bone maintained natural network pore system and the surface of network pore system was coated with collagen membrane. The release of WO-1 from WO-1 loaded bioderived bone showed bursting release on the 1st day, then showed stable release. WO-1 loaded bioderived bone showed lasting and stable bacteriostasis to common pathogens of orthopaedic infections. The high concentration of WO-1 was observed in bone tissue and in muscle tissue at differenttime points and the difference among groups had no significance(P>0.05), while the concentration of WO-1 in blood was very low(P<0.05). Conclusion WO-1 loaded bioderived bone has good capability of drug controlled-release and bacteriostasis.
Objective To observe the changes in the peripheral blood T lymphocyte subsets and the histomorphology of the transplanted tissues in the rabbits in the early stage after transplantation of the tissue engineered boneconstituted by the biologically-derived scaffold and to confirm the feasibility of the biologicallyderived materials as a scaffold in the bone tissue engineering. Methods Forty-eight healthy New Zealand rabbits (weight, 2.0-2.5 kg) with a 1-cm defect were equally and randomly divided into 4 groups: Groups A-D. The partial demineralized freeze-dried bone (PDFDB), the tissue engineered bone constructed by the osteoblasts derived from the lactant rabbit periosteum as a seeding cell, the xenogeneic cancellous bone undergoing the antigen self-digestion, partial demineralization and freeze-driedprocess as a scaffold, and the fresh xenogeneic allografting bone were respectively transplanted into the segmental defects of the rabbit radii in Groups A-D.To examine the effects of the 4 different materials, the flow cytometry was used to observe the changes in the T lymphocyte subsets in the rabbit peripheral blood at 1, 2, and 4 weeks after the operations and to examine the osteogenesis achieved by the 4 materials, the histological observations were also performed at 2, 4, 8, and 12 weeks after the operations. Results Two weeks after the tissue engineered bone transplantation in Group B, the osteoblasts and chondroblasts were found in the apertures of the scaffold, the new bone formation could be observed, the osteoclasts could be seen in the peripheral zone, and some of the netlike frameworks were destroyed and absorbed. Four weeks after the operation, the histological observation revealed that the osteocartilagionous callus turned into a woven bone. The peripheral blood T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1-2 weeks after the operations and in Groups A and B than before the operations and in the other groups (.Plt;0.05);4 weeks after the operations the T lymphocyte subset of CD4+ was only slightly greater in number than before the operations, but with no statistically significant difference (Pgt;0.05). In Group C, the increase of the T lymphocyte subsets of CD4+ and CD8+ was not significant after the operation (Pgt;0.05). The T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1, 2 and 4 weeks after the operations and in Group D than before the operation and in the other groups (Plt;0.05). Conclusion The tissue engineered bone constructed by the partial demineralized freezedried bone as a scaffold does not cause a serious immunologic rejection in the early stage after the transplantation and does not affect its good ability to repair the bone defect. The biologicallyderived bone canbe used as a scaffold in the bone tissue engineering.
Objective To study the differentiation of the human osteoblasts during the construction of the tissue engineered periosteum with the human acellular amniotic membrane(HAAM).Methods To construct the tissue engineered periosteum (n=60) with HAAM, the human fetal osteoblasts were used. The fetal osteoblasts were cultured for 2, 4, 6, 8, and10 days, and then their total RNA was extracted, which were reversely transcripted to cDNA. The realtime PCR analysis was used to reveal Cbfal and Osterix, and the cycle threshold (Ct) was also measured. The simplycultured osteoblasts were used as the control group (n=20).Results The expression of Cbfa1 was higher in the experimental group on the 2nd day when compared with that on the 4th, 6th, and 8th day(P<0.05). The same result existed on the 10th day when compared with that on the 4th and 8th day. The expression of Osterix increased and was highest on the 8th day when compared with the other results(P<0.05). Both of the 2 gene expressions were decreased in the control group when compared with those in the experimental group, but with no significant difference(P>0.05). Conclusion Cbfa1 and Osterix can be normally expressed by the osteoblasts after their integration with HAAM. As a scaffold, HAAM can be used to keep the osteoblast phenotype and differentiation with an osteoconductive ability. Such a cell-scaffold complex may provide a basis for the osteogenesis.
OBJECTIVE: To explore the SV40-mediated immortalization, the related factors and their roles in cell immortalization. METHODS: The original articles about cell immortalization and replicative senescence in recent decade were reviewed. RESULTS: Cell immortalization was a multifaceted phenomenon, it was involved in viral DNA integration, activation of telomerase, inactivation of growth suppressors, and so on, and their roles were closely related. CONCLUSION: The research on cell immortalization may be expected to provide important insights into a broad range of cellular biological phenomenon, and the immortalized cells can play important roles in the research of cell engineering and tissue engineering as standard cells.
Objective To provide the chosen scaffold materials for experiment and application of tissue engineering and to detect the properties of the collagenbio-derived bone scaffold material loading WO-1. Methods The purebio-derived bone scaffold material, bio-derived bone scaffold material loading collagen, collagen bio-derived bone scaffold material loading WO-1 were made by use of allograftbone, and typeI collagen, and WO-1. The morphological features, constitute components and mechanical properties were examined by scanning electron microscopy,X- rays diffraction and mechanical assay. Results The bio-derived bone scaffold material maintained natural network pore system; the bio-derived bone scaffold material loading collagen maintained natural network pore system, the surface of network pore system was coated by collagen membrane; the collagen bio-derived bone scaffold material loading WO-1 maintained natural network pore system, thesurface of network pore system was coated by collagen membrane. The pore sizes of the 3materials were 90-700 μm, 75-600 μm and 80-600 μm, respectively, and the porosities were 87.96%, 80.47%, 84.2%. There was no significant difference between them(P>0.05).The collagen bio-derived bone scaffold material loading WO-1 consisted of [HA,Ca10(OH)2(PO4)6]. There was no significant difference in the mechanical strength of the three scaffold materials. Conclusion The bio-derived bone scaffold material loading WO-1 is as good as bio-derived bone scaffold material and collagen bio-derived bone scaffold material, and it is an effective scaffold material for tissue engineering bone.
【Abstract】ObjectiveTo investigate the relationship between galectin-3 and tumour metastasis, and the future prospect of galectin-3 in clinic.MethodsRelated articles were reviewed. ResultsGalectin-3, a member of the β-galactoside-binding proteins, is expressed widely in epithelial and immune cells, and interacts with intracellular glycoproteins, cell surface molecules and extracellular matrix proteins. Galectin-3 is involved in various biological phenomena including cell growth, adhesion, differentiation, angiogenesis and apoptosis, and is associated with invasion and metastasis of tumour. ConclusionBecause of the correlation between galectin-3 and tumour invasion and metastasis, galectin-3 may act as the diagnostic marker for tumour metastasis and one of the target proteins for cancer treatment.