Objective To investigate the anatomy of anterior and posterior terminal perforators of the peroneal artery and its clinical applications. Methods Six lower limb specimens were obtained from 3 fresh cadavers. The anterior and posterior terminal perforators and the perforator of terminal peroneal artery were exposed under surgical microscope, and the distances from the beginning of each perforator branch to the lateral malleolus tip and the external diameter of each perforator were measured. With these anatomical knowledge and contrast-enhanced ultrasound (CEUS) guidance, the pedicle flaps with above-mentioned perforators were rationally selected and precisely designed for 18 patients with skin defects in the ankle and foot region between October 2016 and December 2018. Among the patients, there were 14 males and 4 females, aged 28-62 years, with an average age of 40 years. The area of wound ranged from 4 cm×3 cm to 13 cm×10 cm and the area of skin flap ranged from 5 cm×4 cm to 14 cm×10 cm. The anterior peroneal artery terminal perforator flap were applied in 13 cases and the posterior peroneal artery terminal perforator flap in 5 cases. The donor sites were closed directly in 7 cases and repaired with full thickness skin graft in 11 cases. Results The distance from the beginning of the anterior terminal perforator to the lateral malleolus tip was (5.1±0.5) cm, the external diameter of the anterior terminal perforator was (1.51±0.05) mm. The distance from the beginning of the posterior terminal perforator to the lateral malleolus tip was (4.9±0.9) cm, the external diameter was (1.78±0.17) mm; the distance from the beginning of the perforator of terminal peroneal artery to the lateral malleolus tip was (1.7±0.7) cm, the external diameter was (0.58±0.12) mm. Clinical application results: The edge of the flap was dark in 2 cases after operation and healed after surgical dressing, and 1 case of wound infection healed gradually after debridement. The other flaps survived and healed by first intention. Three patients underwent plastic surgery at 3 months after operation due to flap swelling. All patients were followed up 3-18 months. During the follow-up period, the flaps had good texture and appearance, and partial recovery of sensation. All cases were assessed by the American Orthopaedic Foot and Ankle Society (AOFAS) score at last follow-up. The results were excellent in 9 cases, good in 6 cases, fair in 2 cases, and poor in 1 case, with the excellent and good rate of 83.3%. ConclusionFurther classification of peroneal artery perforators in the lateral malleolus region can improve clinical understanding and be helpful to selection and application of perforator flaps in the lateral malleolus.
Objective To evaluate the effectiveness of free medial femoral condyle (MFC) functional chimeric perforator flap (FCPF) transplantation in reconstructing joint function by repairing concomitant osteochondral defects and soft tissue loss in hand and foot joints. Methods A retrospective analysis was performed on 6 patients (5 males, 1 female; mean age 33.4 years, range 21-56 years) with traumatic osteochondral joint defects and associated tendon, nerve, and soft tissue defects treated between January 2019 and May 2025. Defect locations included metacarpal heads (n=2), metacarpophalangeal joint (n=1), first metatarsal head (n=1), base of first proximal phalanx (n=1), and talar head (n=1), with soft tissue defects in all cases. Osteochondral defect sizes ranged from 1.5 cm×1.2 cm×0.7 cm to 4.0 cm×0.6 cm×0.6 cm, and skin defects ranged from 4 cm × 3 cm to 13 cm × 4 cm. The stage Ⅰ treatment included debridement, antibiotic-loaded bone cement filling of bone-cartilage defects, fracture internal fixation, and coverage with vacuum sealing drainage. Stage Ⅱ involved harvesting a free MFC- FCPF included an osteochondral flap (range of 1.5 cm×1.2 cm×0.7 cm to 4.0 cm×0.6 cm×0.6 cm), gracilis and/or semitendinosus tendon grafts (length of 4-13 cm), saphenous nerve graft (length of 3.5-4.0 cm), and a perforator skin flap (range of 6 cm×4 cm to 14 cm×6 cm), each with independent vascular supply. The flap was transplanted to reconstruct joint function. Donor sites were closed primarily or with skin grafting. Flap survival was monitored postoperatively. Radiographic assessment was used to evaluate bone/joint healing. At last follow-up, the joint function recovery was assessed using the upper limb function evaluation standard of the Chinese Medical Association Hand Surgery Society for the hand, the Maryland Foot Score for the foot, and International Knee Documentation Committee (IKDC) Score for the knee. Results All 6 FCPF survived completely, with primary healing of wounds and donor sites. All patients were followed up 6-44 months (mean, 23.5 months). The flaps at metacarpophalangeal joint in 1 case and at ankle joint in 1 case were treated with degreasing repair because of their bulky appearance, while the other flaps had good appearance and texture. At 3 months after operation, the VAS score of recipient area was 0-2, with an average of 0.7; at last follow-up, the VAS score of the donor area was 0-1, with an average of 0.3. According to the Paley fracture healing scoring system, the osteochondral healing of all the 6 patients was excellent. The range of motion of the metacarpophalangeal joint in 3 cases was 75%, 90%, and 100% of contralateral side respectively, the range of motion of the metatarsophalangeal joint in 2 cases was 65% and 95% of contralateral side respectively, and the range of motion of the ankle joint in 1 case was 90% of contralateral side. The hand function was evaluated as excellent in 2 cases and good in 1 case according to the upper limb function evaluation standard of the Chinese Medical Association Hand Surgery Society, and the foot function was evaluated as excellent in 2 cases and fair in 1 case according to the Maryland foot function score of 93, 91, and 69, respectively. The IKDC score of 6 knees was 91-99, with an average of 95.2. Conclusion The free MFC-FCPF enables precise anatomical joint reconstruction with three-dimensional restoration of tendon, nerve, capsule, and soft tissue defects, effectively restoring joint function and improving quality of life.