west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "algorithm" 70 results
  • Non-contact Heart Rate Estimation Based on Joint Approximate Diagonalization of Eigenmatrices Algorithm

    Based on the imaging photoplethysmography (iPPG) and blind source separation (BSS) theory the author put forward a method for non-contact heartbeat frequency estimation. Using the recorded video images of the human face in the ambient light with Webcam, we detected the human face through software, separated the detected facial image into three channels RGB components. And then preprocesses i.e. normalization, whitening, etc. were carried out to a certain number of RGB data. After the independent component analysis (ICA) theory and joint approximate diagonalization of eigenmatrices (JADE) algorithm were applied, we estimated the frequency of heart rate through spectrum analysis. Taking advantage of the consistency of Bland-Altman theory analysis and the commercial Pulse Oximetry Sensor test results, the root mean square error of the algorithm result was calculated as 2.06 beat/min. It indicated that the algorithm could realize the non-contact measurement of heart rate and lay the foundation for the remote and non-contact measurement of multi-parameter physiological measurements.

    Release date: Export PDF Favorites Scan
  • Detection study of walking segments of children with cerebral-palsy based on surface electromyographic signals

    In this study, surface electromyography (sEMG) of the lower limbs of cerebral-palsy (CP) subjects in gait cycle was recorded and its parameters of gait cycle characters were analyzed to assess their clinical severity. Three algorithms, including integrated profile (IP), sample-entropy (SampEN) and smooth nonlinear energy operator (SNEO) algorithm, were applied to calculate the duration of walking sEMG segments in simulated SEMG signals. After that, the efficiency and accuracy were compared among these three algorithms. SNEO was then selected as the optimal algorithm among the three algorithms and employed for real sEMG signal processing of CP subjects. The results indicated that there was no significant difference in the accuracy of sEMG segement detection for the three algorithms. However, the computation speed of SNEO algorithm was much faster than those of the others and thus it was a suitable algorithm for detecting walking sEMG segments of CP subjects. In addition, the positive correlation was found between the clinical severity and the mean duration of walking sEMG segments in CP subjects. The results indicated that there was a significant difference in the three groups of CP subjects with different levels of severity. Our findings showed that the mean duration of walking sEMG segments could be considered as an assistant index to evaluate the clinical severity of CP subjects.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Drug-target protein interaction prediction based on AdaBoost algorithm

    The drug-target protein interaction prediction can be used for the discovery of new drug effects. Recent studies often focus on the prediction of an independent matrix filling algorithm, which apply a single algorithm to predict the drug-target protein interaction. The single-model matrix-filling algorithms have low accuracy, so it is difficult to obtain satisfactory results in the prediction of drug-target protein interaction. AdaBoost algorithm is a strong multiple classifier combination framework, which is proved by the past researches in classification applications. The drug-target interaction prediction is a matrix filling problem. Therefore, we need to adjust the matrix filling problem to a classification problem before predicting the interaction among drug-target protein. We make full use of the AdaBoost algorithm framework to integrate several weak classifiers to improve performance and make accurate prediction of drug-target protein interaction. Experimental results based on the metric datasets show that our algorithm outperforms the other state-of-the-art approaches and classical methods in accuracy. Our algorithm can overcome the limitations of the single algorithm based on machine learning method, exploit the hidden factors better and improve the accuracy of prediction effectively.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Diagnosis of pulmonary hypertension associated with congenital heart disease based on statistical features of the second heart sound

    Aiming at the problems of obscure clinical auscultation features of pulmonary hypertension associated with congenital heart disease and the complexity of existing machine-aided diagnostic algorithms, an algorithm based on the statistical characteristics of the high-frequency components of the second heart sound signal is proposed. Firstly, an endpoint detection adaptive segmentation method is employed to extract the second heart sounds. Subsequently, the high-frequency component of the heart sound is decomposed using the discrete wavelet transform. Statistical features including the Hurst exponent, Lempel-Ziv information and sample entropy are extracted from this component. Finally, the extracted features are utilized to train an extreme gradient boosting algorithm (XGBoost) classifier, which achieves an accuracy of 80.45% in triple classification. Notably, this method eliminates the need for a noise reduction algorithm, allows for swift feature extraction, and achieves effective multi-classification using only three features. It is promising for early screening of pulmonary hypertension associated with congenital heart disease.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • Nonparametric Method of Estimating Survival Functions Containing Right-censored and Interval-censored Data

    Missing data represent a general problem in many scientific fields, especially in medical survival analysis. Dealing with censored data, interpolation method is one of important methods. However, most of the interpolation methods replace the censored data with the exact data, which will distort the real distribution of the censored data and reduce the probability of the real data falling into the interpolation data. In order to solve this problem, we in this paper propose a nonparametric method of estimating the survival function of right-censored and interval-censored data and compare its performance to SC (self-consistent) algorithm. Comparing to the average interpolation and the nearest neighbor interpolation method, the proposed method in this paper replaces the right-censored data with the interval-censored data, and greatly improves the probability of the real data falling into imputation interval. Then it bases on the empirical distribution theory to estimate the survival function of right-censored and interval-censored data. The results of numerical examples and a real breast cancer data set demonstrated that the proposed method had higher accuracy and better robustness for the different proportion of the censored data. This paper provides a good method to compare the clinical treatments performance with estimation of the survival data of the patients. This provides some help to the medical survival data analysis.

    Release date: Export PDF Favorites Scan
  • IC-kmedoids: A Clustering Algorithm for RNA Secondary Structure Prediction

    Due to the minimum free energy model, it is very important to predict the RNA secondary structure accurately and efficiently from the suboptimal foldings. Using clustering techniques in analyzing the suboptimal structures could effectively improve the prediction accuracy. An improved k-medoids cluster method is proposed to make this a better accuracy with the RBP score and the incremental candidate set of medoids matrix in this paper. The algorithm optimizes initial medoids through an expanding medoids candidate sets gradually.The predicted results indicated this algorithm could get a higher value of CH and significantly shorten the time for calculating clustering RNA folding structures.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Research on Three-dimensional Temperature Field Reconstruction in Biological Tissue Based on Multi-island Genetic Algorithm

    The nondestructive reconstruction of three-dimensional (3D) temperature field in biological tissue is always an important problem to be resolved in biomedical engineering field. This paper presents a novel method of nondestructive reconstruction of 3D temperature field in biological tissue based on multi-island genetic algorithm (MIGA). By this method, the resolving of inverse problem of bio-heat transfer is transformed to be a solving process of direct problem. An experiment and its corresponding simulation were carried out to verify the feasibility and reliability. In the experiment a high purity polypropylene material, whose thermophysical parameters were similar to the fat tissue being tested, were adopted so that it could avoid the negative results created by the other factors. We set the position P(x, y, z) as the point heat source in the biological tissue and its temperature t as optimization variable, got the experimental temperature values of the points in a module surface, subtracted them from the corresponding simulating temperature values in the same module surface, and then took the sum of absolute value. We took it as the objective function of successive iteration. It was found that the less the target value was, the more optimal the current variables, i.e. the heat source position and the temperature values, were. To improve the optimization efficiency, a novel establishment method of objective function was also provided. The simulating position and experimental position of heat source were very approximate to each other. When the optimum values are determined, the corresponding 3D temperature field is also confirmed, and the temperature distribution of arbitrary section can be acquired. The MIGA can be well applied in the reconstruction of 3D temperature field in biological tissue. Because of the differences between the MIGA and the traditional numerical methods, we do not have to acquire all the data of surface. It is convenient and fast, and shows a prosperous application future.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Predictive analysis of delirium risk in ICU patients with cardiothoracic surgery by ensemble classification algorithm of random forest

    ObjectiveTo analyze the predictive value of ensemble classification algorithm of random forest for delirium risk in ICU patients with cardiothoracic surgery. MethodsA total of 360 patients hospitalized in cardiothoracic ICU of our hospital from June 2019 to December 2020 were retrospectively analyzed. There were 193 males and 167 females, aged 18-80 (56.45±9.33) years. The patients were divided into a delirium group and a control group according to whether delirium occurred during hospitalization or not. The clinical data of the two groups were compared, and the related factors affecting the occurrence of delirium in cardiothoracic ICU patients were predicted by the multivariate logistic regression analysis and the ensemble classification algorithm of random forest respectively, and the difference of the prediction efficiency between the two groups was compared.ResultsOf the included patients, 19 patients fell out, 165 patients developed ICU delirium and were enrolled into the delirium group, with an incidence of 48.39% in ICU, and the remaining 176 patients without ICU delirium were enrolled into the control group. There was no statistical significance in gender, educational level, or other general data between the two groups (P>0.05). But compared with the control group, the patients of the delirium group were older, length of hospital stay was longer, and acute physiology and chronic health evaluationⅡ(APACHEⅡ) score, proportion of mechanical assisted ventilation, physical constraints, sedative drug use in the delirium group were higher (P<0.05). Multivariate logistic regression analysis showed that age (OR=1.162), length of hospital stay (OR=1.238), APACHEⅡ score (OR=1.057), mechanical ventilation (OR=1.329), physical constraints (OR=1.345) and sedative drug use (OR=1.630) were independent risk factors for delirium of cardiothoracic ICU patients. The variables in the random forest model for sorting, on top of important predictor variable were: age, length of hospital stay, APACHEⅡ score, mechanical ventilation, physical constraints and sedative drug use. The diagnostic efficiency of ensemble classification algorithm of random forest was obviously higher than that of multivariate logistic regression analysis. The area under receiver operating characteristic curve of ensemble classification algorithm of random forest was 0.87, and the one of multivariate logistic regression analysis model was 0.79.ConclusionThe ensemble classification algorithm of random forest is more effective in predicting the occurrence of delirium in cardiothoracic ICU patients, which can be popularized and applied in clinical practice and contribute to early identification and strengthening nursing of high-risk patients.

    Release date:2022-07-28 10:21 Export PDF Favorites Scan
  • Research on gait recognition and prediction based on optimized machine learning algorithm

    Aiming at the problems of individual differences in the asynchrony process of human lower limbs and random changes in stride during walking, this paper proposes a method for gait recognition and prediction using motion posture signals. The research adopts an optimized gated recurrent unit (GRU) network algorithm based on immune particle swarm optimization (IPSO) to establish a network model that takes human body posture change data as the input, and the posture change data and accuracy of the next stage as the output, to realize the prediction of human body posture changes. This paper first clearly outlines the process of IPSO's optimization of the GRU algorithm. It collects human body posture change data of multiple subjects performing flat-land walking, squatting, and sitting leg flexion and extension movements. Then, through comparative analysis of IPSO optimized recurrent neural network (RNN), long short-term memory (LSTM) network, GRU network classification and prediction, the effectiveness of the built model is verified. The test results show that the optimized algorithm can better predict the changes in human posture. Among them, the root mean square error (RMSE) of flat-land walking and squatting can reach the accuracy of 10−3, and the RMSE of sitting leg flexion and extension can reach the accuracy of 10−2. The R2 value of various actions can reach above 0.966. The above research results show that the optimized algorithm can be applied to realize human gait movement evaluation and gait trend prediction in rehabilitation treatment, as well as in the design of artificial limbs and lower limb rehabilitation equipment, which provide a reference for future research to improve patients' limb function, activity level, and life independence ability.

    Release date:2022-04-24 01:17 Export PDF Favorites Scan
  • Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm

    The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content