【 Abstract 】 Objective To probe into the role of inositol 1, 4, 5-trisphosphate (IP3) and bax gene expression in apoptosis of HepG2 cells induced by genistein (Gen). Methods HepG2 cells were treated with different concentrations including 20, 40, 60 and 80 μ mol/L Gen as HepG2 cells cultured with 0 μmol/L Gen for 72 h was control; HepG2 cells were treated with 60 μmol/L Gen for 6, 12, 24, 48 and 72 h as HepG2 cells treated with 60 μmol/L Gen for 0 h was control. IP3 content, bax mRNA expression and apoptosis rate were assayed by IP3- [ 3H ] Birtrak assay, RT-PCR and flow cytometry, respectively. ResultsHepG2 cells incubated with each concentration of Gen for 72 h , IP3 content was lower than that of control 〔 (17.7 ± 1.3), (11.2 ± 0.9), (4.9 ± 0.5), (4.8 ± 0.3) pmol/106 cells vs (29.4 ± 0.5) pmol/106 cells 〕 , P < 0.01 ; bax mRNA expression (RI which was the gray degree multiply area of bax/the gray degree multiply area of β -actin) was higher than that of control (0.26 ± 0.02, 0.33 ± 0.05, 0.35 ± 0.06, 0.38 ± 0.05 vs 0.09 ± 0.01), P < 0.01 ; The apoptosis rate was higher than that of control 〔 (10.1 ± 0.9)%, (18.7 ± 1.6)%, (28.7 ± 2.5)%, (27.9 ± 2.0)% vs (2.6 ± 0.1)% 〕 , P < 0.01. HepG2 cells were incubated with 60 μ mol/L Gen for 6, 12, 24, 48 and 72 h , IP3 content was lower than that of control 〔 (22.6 ± 0.9), (12.0 ± 1.4), (7.5 ± 0.8), (5.6 ± 0.5), (4.3 ± 0.6) pmol/106 cells vs (29.2 ± 0.6) pmol/106 cells 〕 , P < 0.01 ; bax mRNA expression was higher than that of control incubated with 60 μ mol/L Gen for above 12 h (0.25 ± 0.06, 0.29 ± 0.02, 0.30 ± 0.02, 0.35 ± 0.04 vs 0.09 ± 0.01), P < 0.01 ; The apoptosis rate in groups incubated with 60 μ mol/L Gen for 24, 48 and 72 h was significantly higher than that in control 〔 (7.4 ± 0.5)%, (20.5 ± 2.0)%, (30.7 ± 1.6)% vs (2.6 ± 0.1)% 〕 , P < 0.01. ConclusionGen induces apoptosis of HepG2 cells by reducing IP3 production and increasing bax gene expression.
Objective To detect the cell density, apoptotic rate, and the expressions of BNIP3 in nucleus pulposus of degenerative intervertebral disc of rabbits, so as to further understand the mechanism of intervertebral disc degeneration. Methods Thirty male New Zealand white rabbits, aging 3 months and weighing (2.3 ± 0.2) kg, were divided into sham operation group (control group, n=10) and intervertebral disc degeneration model group (experimental group, n=20). Interbertebral disc degeneration models were establ ished by puncture of L3,4, L4,5, and L5,6 intervertebral discs in the experimental group; intervertebral discs were exposed only and then sutured in the control group. The degree of intervertebral disc degeneration was evaluated according to Pfirrmann classification by MRI at 4 and 8 weeks after establ ishing models. Apototic cells were determined by TUNEL and histological methods, and the immunohistochemical staining was performed to detect the expressions of BNIP3 in nucleus pulposus of intervertebral disc. Results MRI examination showed that the signal intensity decreased gradually at 4 and 8 weeks in the experimental group. There wassignificant difference in the degree of intervertebral disc degeneration between at 4 weeks and at 8 weeks in the experimental group (P lt; 0.05). The histological observation and TUNEL test showed that high density of nucleus pulposus cells and only a few apoptotic cells were observed in the control group; at 4 and 8 weeks, the density of nucleus pulposus cells decreased gradually with more apoptotic cells in the experimental group. There were significant differences in the nucleus pulposus cell density and positive rate of TUNEL staining between 2 groups, and between at 4 weeks and at 8 weeks in the experimental group (P lt; 0.05). The expression of BNIP3 of nucleus pulposus was negative in the control group; however, in the experimental group, the positive expression rates of BNIP3 of nucleus pulposus (the gray values) were 13.45% ± 1.16% and 32.00% ± 1.82% (194.32 ± 4.65 and 117.54 ± 2.11) at 4 and 8 weeks respectively, showing significant differences (P lt; 0.05). Conclusion The decrease of cell density in nucleus pulposus is involved in the development of intervertebral disc degeneration. Cell apoptosis is one of reasons in the decrease of nucleus pulposus cell; BNIP3 is involved in nucleus pulposus cell apoptosis in the degenerative intervertebral disc.
Objective To investigate the effect of ursolic acid on the proliferation and apoptosis of human osteosarcoma cell line U2-OS and analyze its mechanism. Methods Human osteosarcoma cell line U2-OS was divided into 4 groups, which was cultured with ursolic acid of 0, 10, 20, and 40 μmol/L, respectively. At 0, 24, 48, and 72 hours after being cultured, the cell proliferation ability was detected by cell counting kit 8 (CCK-8). At 48 hours, the effects of ursolic acid on cell cycle and apoptosis of U2-OS cells were measured by flow cytometry. Besides, the expressions of cyclin D1 and Caspase-3 were detected by real-time fluorescent quantitative PCR and Western blot. Results CCK-8 tests showed that the absorbance (A) value of each group was not significant at 0 and 24 hours (P>0.05); but the differences between groups were significant at 48 and 72 hours (P<0.05). Flow cytometry results showed that, with the ursolic acid concentration increasing, the G1 phase of U2-OS cells increased, the S phase and G2/M phase decreased, and cell apoptosis rate increased gradually. There were significant differences between groups (P<0.05). Compared with the 0 μmol/L group, the relative expressions of cyclin D1 mRNA and protein in 10, 20, and 40 μmol/L groups significantly decreased (P<0.05); whereas, there was no significant difference in relative expression of Caspase-3 mRNA between groups (P>0.05). However, with the ursolic acid concentration increasing, the relative expressions of pro-Caspase-3 protein decreased and the relative expressions of activated Caspase-3 increased; there were significant differences between groups (P<0.05). Conclusion Ursolic acid can effectively inhibit the proliferation of osteosarcoma cell line U2-OS, induce the down-regulation of cyclin D1 expression leading to G0/G1 phase arrest, increase the activation of Caspase-3 and promote cell apoptosis.
ObjectiveTo introduce the relationship between the apoptosis hepatocyte and its genic mediation and the ischemia of portal vein. MethodsThe combination of related literatures and our research findings were made.ResultsPortal vein ischemia may induced hepatocyte apoptosis, p53 and bcl2 gene alternatively adjust hepatocyte apoptosis. Expression of p53 gene is enhanced in hepatic tissue when hepatocyte apoptosis is not obvious, but after 24-72 h of portal vein ischemia, when hepatocyte apoptosis is obvious, enhanced expression of p53 gene or reduced expression of bcl2 gene occur. There exists close relationship between portal vein ischemia and hepatocyte apoptosis. Conclusion Apoptosis hepatocyte is involved in organic atrophy after ischemia of portal vein, and p53 and bcl2 gene alternatively adjust hepatocyte apoptosis. At present, the mechanism of apoptosis of hepatocyte induced by ischemia of portal vein is not clear, which needs further study.
ObjectiveTo explore the effects and molecular mechanisms of histone methylase G9a inhibitor BIX-01294 on apoptosis in esophageal squamous cell carcinoma (ESCC).MethodsMTT assay and Colony-forming Units were adopted to determine the effects of BIX-01294 on the growth and proliferation of ESCC cell lines EC109 and KYSE150. Flow cytometry was used to analyze the apoptosis status of ESCC cells after the treatment of BIX-01294. The effects of BIX-01294 treatment on the expressions of G9a catalytic product H3K9me2, DNA double-strand break (DSB) markers, and apoptosis-related proteins were detected by Western blotting.ResultsBIX-01294 inhibited the growth of EC109 and KYSE150 cells in a dose-dependent manner (P<0.05), and BIX-01294 with the inhibitory concentration 50% (IC50) significantly inhibited the formation of colony (P<0.05). After 24 hours treatment of BIX-01294 (IC50), the apoptosis rate of EC109 cells increased from 11.5%±2.1% to 42.5%±5.4%, and KYSE150 cells from 7.5%±0.9% to 49.2%±5.2% (P<0.05). The expression level of the G9a catalytic product, H3K9me2, significantly decreased (P<0.05); while the expression of the DSB marker γH2AX was dramatically enhanced (P<0.05). We also found that the mitochondrial apoptosis pathway was activated and the expression levels of cleaved caspase3 and cleaved PARP were significantly elevated (P<0.05).ConclusionBIX-01294, the inhibitor of methyltransferase G9a, prompted apoptosis in ESCC cells by inducing DSB damage and activating mitochondrial apoptosis pathway.
Objective To investigate the effect of different concentrations of raloxifene (RAL) on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs) in vitro. Methods AVICs were isolated from human aortic valve by collagenase type Ⅱ, and cultured in different concentrations (0 nmol/L, 0.1 nmol/L, 1 nmol/L,10 nmol/L, 100 nmol/L and 1 000 nmol/L) of RAL. AVICs cultured in 0 nmol/L RAL were treated as the control group and those in other concentrations of RAL as the experiment groups. The proliferation and apoptosis of AVICs were evaluated by Cell Proliferation Assay (MTS assay) on day 0, 3, 5, 7 and 9. Flow cytometry was used to detect the cell cycle and apoptosis of AVICs on day 7. Results MTS results showed that the optical density value at 490 nm was much less in 10 nmol/L RAL and 100 nmol/L RAL groups (P<0.05) on day 5, 7 and 9 than that in the control group. Flow cytometry results demonstrated that S-phase rate (P<0.05) and cell apoptosis rate (P<0.05) on day 7 were lower in the 10 nmol/L and 100 nmol/L RAL groups compared with the control group. Conclusion RAL with suitable concentration can inhibit proliferation and apoptosis of AVICs, which will lay an important foundation for further research of the role of RAL on heart valve diseases.
【Abstract】 Objective To investigate the effect of verapamil on apoptosis, calcium and expressions of bcl-2 and c-myc of pancreatic cells in ischemia-reperfusion rat model. Methods Wistar rats were randomly divided into three groups: control group (n=10); ischemia-reperfusion group (n=10); verapamil treatment group (n=10). The anterior mesenteric artery and the celiac artery of rats in both ischemia-reperfusion group and verapamil treatment group were occluded for 15 min followed by 12-hour reperfusion. Verapamil (1 mg/kg) was injected via caudal vein to the rats in verapamil treatment group 15 min before occlusion and 1 hour after the initiation of reperfusion, respectively; and ischemia-reperfusion group was given the same volume of salient twice intravenously. Pancreatic tissues were collected from the dead rats after twelve hours since the reperfusion. The pathologic characters of pancreatic tissue were observed under light microscope; The level of calcium in the tissue was measured by atomic absorption spectrometer; TUNEL was used to detect apoptosis of pancreatic cells; and the expressions of c-myc and bcl-2 in the cells were also analyzed by immunohistochemistry technique and flow cytometry. Results The pathologic change in verapamil treatment group was less conspicuous than that of ischemia-reperfusion group. Both the calcium level and the number of apoptotic cells in verapamil treatment group were less than those of ischemia-reperfusion group 〔(411.1±55.8) μg/g dry weight vs (470.9±31.9) μg/g dry weight, P<0.05 and (9.5±2.9)% vs (18.4±3.1)% 〕, P<0.05. After taking verapamil, the number of apoptotic cells decreased, whereas the expressions of bcl-2 and c-myc increased. The fluorescent indexes of bcl-2 and c-myc in verapamil treatment group were significantly higher than those of ischemia-reperfusion group (1.72±0.11 vs 1.41±0.07, P<0.05; 1.76±0.19 vs 1.55±0.13, P<0.05. Conclusion Ischemia-reperfusion injury can induce apoptosis of pancreatic cells. Verapamil could protect the injured pancreatic tissue by reducing the level of calcium, stimulating the expressions of bcl-2 and c-myc and inhibiting apoptosis of pancreatic cells.
Objective To observe the structural changes of urinary center and the expression of Bcl-2 after conus medullaris injury in rats brain so as to explore the possible influence factors of degeneration in brain. Methods Thirty-six adult Sprague-Dawley rats were randomly divided into experimental group (n=30) and control group (n=6). In the experimental group, the conus medullaris injury model was established by cutting off the spinal nerve below L4, and no treatment was done in the control group. The modeling operations in the experimental group were successful, and 2 rats died at 3 months and 5 months after modeling operation respectively, which may be caused by renal failure or urinary tract infection. In the experimental group, 6, 6, 6, 5, and 5 rats were killed at 1 day, 1 week, and 1, 3, 6 months after operation respectively, and 1 rat was killed at each time point in the control group. The dorsolateral tissue of the pontine tegmentum was harvested to perform HE staining and Bcl-2 immunohistochemical SP staining. Results HE staining showed that there was no obvious difference between the experimental group and the control group at 1 day after operation, the neurons were densely packed, arranged neatly, and the nucleoli were clear; at 1 week, the space between the neurons in the experimental group were slightly widened; at 1 month, nucleus retraction in some neurons happened in the experimental group; at 3 and 6 months, the nuclei in the experimental group were more and more condensed, and even some cells disappeared. Bcl-2 immunohistochemical SP staining showed that the expression of Bcl-2 in the control group was weakly positive. The positive expression of Bcl-2 was found at 1 day after operation in the experimental group; the positive expression of Bcl-2 at 7 days after operation was significantly higher than that in the control group, and reached the peak; the positive expression of Bcl-2 decreased gradually at 1, 3, and 6 months after modeling operation, but it was still higher than that of the control group. Conclusion The urinary center appears structure degeneration and necrocytosis after conus medullaris injury in rats brain. The elevated expression of Bcl-2 may be associated with brain tissue repair and function remodeling.
Objective To observe the outcomes of using different concentrations of arsenic trioxide at varying phases on the breast cancer cell line MCF-7 and to study the mechanism of this effect. Methods The effect of arsenic trioxide on the growth of breast cancer cell line MCF-7 was observed after applying arsenic trioxide of different concentrations (0.5-16 μmol/L). The inhibitory effect of arsenic trioxide on the cell proliferation was investigated with 3-(4,5-dimethyl-thizazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and the induction of arsenic trioxide on cell apoptosis was detected by DNA ladder and terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL). Results The effect of arsenic trioxide on breast cancer cell line MCF-7 depended on the phase and the dose. The number of cell decreased significantly and there were conspicuously typical morphological changes of apoptosis after the use of arsenic trioxide, including membrane blebbing, chromatin pyknosis, nuclear fragmentation and the formation of apoptotic body. The typical DNA ladders were observed in the MCF-7 cells after 48 h administration of arsenic trioxide at concentrations 1-8 μmol/L. Significant elevations of apoptosis index at 24 h, 48 h and 72 h were all detected by TUNEL after incubating with 4 μmol/L arsenic trioxide. Conclusion Arsenic trioxide may inhibit the growth of breast cancer cell line MCF-7 significantly by inducing the apoptosis of breast cancer cell.
Objective To investigate the regulatory effect of somatostatin analogue (SMS201995,SMS) on proliferation and apoptosis in human cholangiocarcinoma cell line in vitro. MethodsProliferation curve, flow cytometry, agarose gel electrophoresis, Annexin VFITC and flow cytometric immunofluorescent technique were performed to identify the inhibitory effect on cell proliferation and the induction of apoptosis of human cholangiocarcinoma cells (SKChA1). ResultsSMS significantly reduced the SKChA1 cell growth by serum in long experiments and transiently accumulated it in G0/G1 phase. Dotplot analysis of cells duallabeled with Annexin VFITC and PI confirmed the induction of apoptosis by SMS in SKChA1 cells.AnnexinVFITC labeling was markedly enhanced following treatment with SMS for 24 h. DNA of treated SKChA1 cells appeared a ladder pattern characteristic of apoptosis. Besides, timedependent increase in bax and decrease in bcl2 occured during SMS treatment. Conclusion SMS could inhibit the proliferation activity and induce apoptosis of cholangiocarcinoma cell line SKChA1. The mechanisms of apoptosis might be correlated with the expression of apoptosisregulatory gene bax and bcl2.