Objective The amniotic carrier complex membrane, which contains bFGF and vitamin C (VitC) and is loaded with BMSCs, is planted into the deeply-partial wounds of rabbits. To explore its influence on the epidermis renascence and regenerating speed in the process of the dermis restore. Methods BMSCs were isolated from the marrows of 24 healthy3-month-old New Zealand rabbits, male or female, weighing 1.0-1.5 kg. The BMSCs were cultured in vitro and purified, and then amniotic carrier complex membrane was prepared, whose size was 4.52 cm2. Three deep-partial wounds, with the area of about 3.14 cm2, were produced on the back of each rabbit. All the wounds were randomly divided into 3 groups: group A, group B and group C. Group A was the experimental group in which the amniotic carrier complex membrane was planted, including 1 ml BMSCs, 10 mL bFGF (0.2 mg/L) and 10 mL VitC (0.02 g/L). In group B, the amniotic carrier complex membrane was planted, including only 1 mL BMSCs. In group C, the amniotic carrier complex membrane alone was planted. After the operation, general observation was conducted. At postoperative 7, 14 and 21 days, respectively, the observation by HE, Masson, Van Giesonr staining and immunohistochemical staining of collagen type I was performed. The ink perfusion method was performed to evaluate the velocity and the qual ity of the wound heal ing after the transplantation. Results All the wounds obtained good heal ing. At 14 days after the operation, the ratio of wound heal ing was 60%, 41% and 23% in groups A, B and C, respectively. At 21 days after the operation, the the ratio of wound heal ing was 99%, 90% and 81% in groups A, B and C, respectively. There were significant differences between any two groups (P lt; 0.05). The depth of the newborn dermis, the number of the active collagen type I mascul ine cells and the number of the blood vessels in group A were better and more than in group B. And those in group B were better and more than in group C. At the exterior area of the newborn dermis, there was lots of regenerated epidermis from the peripheral normal skin, which in group A was better than in group B, and in group B was better than in group C. onclusion The amniotic carrier complex membrane transplanted to deep-partial wounds, which is appended withBMSCs, bFGF and VitC, can accelerate repair and reconstruction of the dermis. There has an optimal time of the renascence and regeneration of the epidermis in the process of dermis repair.
Objective To investigate the effect of bFGF on denervated skeletal muscle in accelerating muscle satell ite cell prol iferation, supplying neurotrophic factors and reducing muscle atrophy. Methods Twenty-eight Wistar male rats weredivided into the experimental group and the control group randomly, whose left lower l imb sciatic nerve was excised to make animal models of denervated skeletal muscle. The sil ia gel tubes containing 0.1 g bFGF and normal sal ine were implanted into gastrocnemius in the experimental and control groups, respectively. After 14 and 30 days of operation, gross appearance was observed; muscle wet weight and potential ampl itude of gastrocnemius fibrillation were measured; histological observation and electron microscope observation were made. Results At 14 and 30 days after operation, gastrocnemius atrophy and adhesion were more obvious in the control group than those in the experimental group. At 30 days after operation, the potential amplitude of gastrocnemius fibrillation and muscle wet weight were experimental group (0.220 6 ± 0.301 0) μm and (2.475 7 ± 0.254 6) g in the experimental group, and (0.155 2 ± 0.050 3) μm and (1.459 1 ± 0.642 5) g in the control group. There was a significant difference between two groups (P lt; 0.05). At 14 and 30 days after operation, HE staining showed more muscle satell ite cell nucleiin gastrocnemius of the experimental group than that of the control group; Mallory staining showed more blue connective tissues in the control group than in the experimental group; PCNA staining showed more PCNA positive cell nuclei in the experimental group than in the control group; and the AgNO3 staining testified more grains of vitamin C and less connective tissue proliferation in the experimental group than in the control group. At 30 days after operation, the fiber diameter and the fiber area were (66.368 6 ± 12.672 7) μm and (2 096.112 9 ± 311.563 9) μm2 in the experimental group, (55.504 0 ± 4.945 0) μm and (1 418.068 0 ± 264.953 7) μm2 in the control group. The PCNA positive cell nuclei number was 116.200 ± 5.357 in the experimental group and 53.000 ± 3.937 in the control group, showing statistically significant difference between the two groups (P lt; 0.05). At 14 and 30 day after operation, ompared with control group, the muscle fiber in the experimental group arrangedly more regularly and had lessatrophy fiber and the connective tissue proliferation. Conclusion bFGF can stimulate the proliferation of muscle satell ite cells in denervated gastrocnemius, delay the muscle fiber atrophy and inhibit connective tissues proliferation in muscle fibers.
Objective To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lacitic acid) (PDLLA) catheters. Methods SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres andECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissueengineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was appl ied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Eelectrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. Results All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P lt; 0.05). At 20 and 24 weeks after the operation, group E was significantly different from groups B and C in SFI (P lt; 0.05). At 12 weeks after the operation, electrophysiological detection showed nerve conduct velocity (NCV) of group E was bigger than that of groups B and C (P lt; 0.05), and compound ampl itude (AMP) as well as action potential area (AREA) of group E were bigger than those of groups B, C and D (P lt; 0.05). At 24 weeks after the operation, NCV, AMP and AREA of group E were bigger than those of groups B and C (Plt; 0.05). At 12 weeks after the operation, histological observation showed the area of regenerated nerves and the number of myel inated fibers in group E were significantly differents from those in groups A, B and C (Plt; 0.05). The density and diameter of myel inated fibers in group E were smaller than those in group A (Plt; 0.05), but bigger than those in groups B, C and D (P lt; 0.05). At 24 weeks after the operation, the area of regenerative nerves in group E is bigger than those in group B (P lt; 0.05); the number of myel inated fibers in group E was significantly different from those in groups A, B, C (P lt; 0.05); and the density and diameter of myel inated fibers in group E were bigger than those in groups B and C (Plt; 0.05). Conclusion The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeables PDLLA catheters promote nerve regeneration and has similar effect to autograft in repair of nerve defects.
【Abstract】 Objective To design a novel small-cal iber vascular graft using a decellularized allogeneic vascularscaffold pre-loaded with bFGF. Methods The decellularized canine common carotid were obtained by a detergent-enzymatic procedure, then the scaffolds were covalently l inked with heparin and pre-loaded with bFGF, the amount of binding bFGF and releasing curve were assayed by ELISA. Canine BMSCs expanded in vitro were seed on the scaffolds to observe the effects of binding bFGF on prol iferation. Both bFGF pre-loaded and non-pre-loaded decellularized grafts were implanted in canines as carotid artery interposition for 8 weeks, the patency was examined by digital subtraction angiography and histological method. Results Histology and electron microscopic examination of the decellularized scaffolds showed that cellular components were removed completely and that the extracellular matrix structure remained intact. The amount of binding bFGF positively related to the concentration of bFGF. There was a significant difference in the amount of binding bFGF between two different scaffoldsthroughout all bFGF concentrations(P lt; 0.05), and up to 100 ng/mL, the local and sustained release of bFGF from the heparin treated scaffolds were assayed up to 20 days. Additionally, MTT test showed the bFGF-preloaded scaffolds significantly enhanced the prol iferation of seeded BMSCs in vitro compared with non-bFGF-preloaded scaffolds at 3 days after seeding and thereafter(P lt; 0.01). Furthermore, in vivo canine experiments revealed that all 8 bFGF-pre-loaded scaffolds remained patent after 8 weeks of implantation, and host cell l ined the lumen and populated the wall. Only 1 non-bFGF-pre-loaded scaffold was patent, and the other 7 grafts were occluded because of thrombsus formation. Conclusion This study provides a new strategy to develop a small diameter vascular graft with excellent biocompatibil ity and high patency rate.
Objective To study the expression changes of vascular endothel ial growth factor (VEGF), basic fibroblast growth factor (bFGF), and bone morphogenetic protein 2 (BMP-2) in femoral neck fracture, traumatic, and non-traumatic avascular necrosis of femoral head (ANFH), and to study the relationshi p between the expressions of VEGF, bFGF, BMP-2mRNA and bone mass so as to explore the pathogenesis of ANFH and provide the exprimental basis for individual treatment of ANFH. Methods Femoral head specimens were obtained from 59 donors undergoing total hip replacement, including 22 cases of traumatic ANFH (group A, 13 cases of Ficat stage III and 9 cases of Ficat stage IV), 19 cases of non-traumatic ANFH (group B, 11 cases of Ficat stage III and 8 cases of Ficat stage IV; 10 cases of steroid-induced ANFH, 7 cases of alcohol ic ANFH, and 2 cases of unexplained ANFH), and 18 cases of fresh femoral neck fracture (group C). There was no significant difference in the general data among 3 groups (P gt; 0.05). The bone mineral density (BMD) at weight-bearing area of the femoral head was measured with dual energy X-ray absorptiometry. The pathological changes were observed by using optical microscope and scanning electron microscope. The percentage of empty bone lacuna and the percentage of trabecular bone area were calculated. The expressions of VEGF, bFGF, and BMP-2 mRNA in femoral head were detected by use of in-situ hybridization technique. Results The BMD in groups A and B were significantly lower than that in group C (P lt; 0.05), and there was significant difference between group A and group B (P lt; 0.05). In the necrosis area of groups A and B, the bone trabecula was rarefactive and not of integrity, with a great number of empty bone lacuna. In healthy area, more fiber hyperplasia was observed in group A, the prol iferated and hypertrophic fat cells in the medullary cavity in group B. Scanning electron microscope showed that many osteocytes underwent fatty degeneration and necrosis, and that the prol iferation of fat cells in bone matrix was observed in groups A and B. While in group C, the femoral head had intact articular cartilage and intact bone trabeculae, and osteocytes were clearly seen. The percentage of empty bone lacuna was significantly higher (P lt; 0.05) and the percentage of trabecular bone area was significantly lower (P lt; 0.05) in groups A and B than group C; and there was significant difference in the percentage of empty bone lacuna between groups A and B (P lt; 0.05). The expressions of VEGF, bFGF, and BMP-2 mRNAwere significantly lower in groups A and B than group C (P lt; 0.05), and the expressions of BMP-2 and bFGF mRNA in group A were significantly higher than those in group B (P lt; 0.05). There were positive l inear correlation between the expressions of VEGF mRNA, bFGF mRNA, BMP-2 mRNA and the BMD and percentage of trabecular bone area, respectively. While there were significantly negative correlation between the expressions of VEGF mRNA, bFGF mRNA, BMP-2 mRNA and percentage of empty bone lacuna. Conclusion The repair capacity of local femoral head in traumatic ANFH is ber than that in non-traumatic ANFH. The expressions of VEGF mRNA, bFGF mRNA, and BMP-2 mRNA decl ine in traumatic and nontraumatic ANFH.
Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
ObjectiveTo explore the possible active mechanism of the basic fibroblast growth factor (bFGF) long circulation l iposome (LCL) (bFGF+LCL) on spinal cord traction injury in rats at the level of proteomics. MethodsTwenty Sprague Dawly rats were randomly divided into groups A and B, 10 rats in each group. The models of spinal cord traction injury was established at T12-L3 spines. The rats were not treated in group A, and the rats were treated with bFGF+LCL (20μg/ kg) in group B. At 3 weeks after operation, the rats were sacrificed for harvesting T13-L2 spinal tissue specimens. The protein was extracted and quantified in the spinal tissue firstly. The proteins from spinal tissue were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. The different expression profiling was established in each group, and the differentially expressed protein was determined by comparing the level of each spot with gel imaging software and manually. The proteins were identified by nano ultra-high performance liquid chromatography-electrospray tandem mass spectrometry (NanoUPLC-ESI-MS/MS), and the proteins were classified. ResultsThe differentially expressed protein spots were found in 2 groups. Compared with group A, 4 spots were up-regulated and 6 were down-regulated in group B. NanoUPLC-ESI-MS/MS results showed that 18 significant proteins were identified in 26 differentially expressed proteins, including 4 apoptosis-related proteins, 3 nerve signal transduction related proteins, 7 proteins involved in metabolism, 1 unknown function protein, and 3 unnamed proteins. ConclusionThe differentially expressed proteins are found in spinal cord traction injury of rats treated with bFGF+LCL. bFGF+LCL can affect the proteins expression in rats with spinal cord traction injury. The possible active mechanism is that it has protective and repair effects on injured spinal cord by nerve signal transduction, and regulation of nerve cells apoptosis and metabolism.
ObjectiveTo study the effects of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) on the proliferation and differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MethodshBMSCs at passage 4 were divided into 4 groups according to different culture conditions:cells were treated with complete medium (α-MEM containing 10%FBS, group A), with complete medium containing 10 ng/mL LIF (group B), with complete medium containing 10 ng/mL bFGF (group C), and with complete medium containing 10 ng/mL LIF and 10 ng/mL bFGF (group D). The growth curves of hBMSCs at passage 4 in different groups were assayed by cell counting kit 8; cellular morphologic changes were observed under inverted phase contrast microscope; the surface markers of hBMSCs at passage 8 including CD44, CD90, CD19, and CD34 were detected by flow cytometry. ResultsThe cell growth curves of each group were similar to the S-shape; the cell proliferation rates in 4 groups were in sequence of group D > group C > group B > group A. Obvious senescence and differentiation were observed very early in group A, cells in group B maintained good cellular morphology at the early stage, with slow proliferation and late senescence; a few cells in group C differentiated into nerve-like cells, with quick proliferation; and the cells in group D grew quickly and maintained cellular morphology of hBMSCs. The expressions of CD44 and CD90 in groups A and C at passage 8 cells were lower than those of groups B and D; the expressions of CD19 and CD34 were negative in 4 groups, exhibiting no obvious difference between groups. ConclusionLIF combined with bFGF can not only maintain multiple differentiation potential of hBMSCs, but also promote proliferation of hBMSCs.
Objective To explore the impact of basic fibroblast growth factor (bFGF) and parathyroid hormone-related protein (PTHrP) on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) induced by transforming growth factor β1 (TGF-β1). Methods BMSCs were isolated from 3 healthy Japanese rabbits (2-month-old, weighing 1.6-2.1 kg, male or female), and were clutured to passage 3. The cells were put into pellet culture system and were divided into 5 groups according to different induce conditions: TGF-β1 group (group A), TGF-β1/bFGF group (group B), TGF-β1/21 days bFGF group (group C), TGF-β1/PTHrP group (group D), and TGF-β1/21 days PTHrP group (group E). At the beginning, TGF-β1 (10 ng/mL) was added to all groups, then bFGF and PTHrP (10 ng/mL) were added to groups B and D respectively; bFGF and PTHrP (10 ng/mL) were added to groups C and E at 21 days respectively. The gene expressions of collagen type I (Col I), Col II, Col X, matrix metalloproteinases (MMP)-13, and alkaline phosphatase (ALP) activity were detected once every week for 6 weeks. The 1, 9-dimethylmethylene blue (DMMB) staining was used to observe the extracellular matrix secretion at 6 weeks. Results The expression of Col I in groups C and E showed a significant downward trend after 3 weeks; the expression in group A was significantly higher than that in groups C and E at 4 and 5 weeks (P lt; 0.05), and than that in groups B and D at 3-6 weeks (P lt; 0.05); and significant differences were found between groups B and C at 3 and 4 weeks, and between groups D and E at 3 weeks (P lt; 0.05). After 3 weeks, the expressions of Col II and Col X in groups C and E gradually decreased, and were significantly lower than those in group A at 4-6 weeks (P lt; 0.05). Groups B and D showed no significant difference in the expressions of Col II and Col X at all time points, but there was significant difference when compared with group A (P lt; 0.05). MMP-13 had no obvious expression at all time points in group A; significant differences were found between group B and groups A, C at 3 weeks (P lt; 0.05); and the expression was significantly higher in group D than in groups A and E (P lt; 0.05). ALP activity gradually increased with time in group A; after 4 weeks, ALP activity in groups C and E obviously decreased, and was significantly lower than that in group A (P lt; 0.05); there were significant differences between groups B and C, and between groups D and E at 2 and 3 weeks (P lt; 0.05). DMMB staining showed more cartilage lacuna in group A than in the other groups at 6 weeks. Conclusion bFGF and PTHrP can inhibit early and late chondrogenic differentiation of BMSCs by changing synthesis and decomposition of the cartilage extracellular matrix. The inhibition is not only by suppressing Col X expression, but also possibly by suppressing other chondrogenic protein.
Objective To study the release properties of basic fibroblast growth factor (bFGF) chitosan microspheres prepared by cross-linking-emulsion method using chitosan as a carrier material so as to lay a foundation for further study. Methods Using 0.6% sodium tripolyphosphate solution as a crosslinking agent and 1.5% solution of chitosan as a carrier material, bFGF chitosan microspheres were prepared by cross-linking-emulsion method. Laser particle size analyzer and Zeta electric potential analyzer were used to measure the particle diameter distribution, scanning electronic microscope to observe the morphology, and ELISA to determine the drug loading, the encapsulation rate, and the drug release properties. Results The particle size of bFGF chitosan microspheres ranged 20.312-24.152 μm. The microspheres were round with a smooth surface and uniform distribution, and it had no apparent porosity. The drug loading and encapsulation rate of microspheres were (7.57 ± 0.34) mg/g and 95.14% ± 1.58%, respectively. The bFGF chitosan microspheres could continuously release bFGF for 24 days; the bFGF level increased gradually with time and reached (820.45 ± 21.34) ng/mL at 24 days; and the microspheres had a burst effect, and the burst rate was 18.08%, and the accumulative release rate of the microspheres reached 82.05% during 24 days. Conclusion It is easy-to-operate to prepare the bFGF chitosan microspheres with the cross-linking-emulsion method. The bFGF chitosan microspheres have smooth surface, uniform distribution, and no apparent porosity.