Biomedical metal materials have always been a major biomedical material with a large and wide range of clinical use due to their excellent properties such as high strength and toughness, fatigue resistance, easy forming, and corrosion resistance. They are also the preferred implant material for hard tissues (bones and teeth that need to withstand higher loads) and interventional stents. And nano-medical metal materials have better corrosion resistance and biocompatibility. This article focuses on the changes and improvements in the properties of several typical medical metal materials surfaces after nanocrystallization, and discusses the current problems and development prospects of nano-medical metal materials.
As one of the stimulus-response polymeric intelligent materials, shape memory polymers have been widely applied in biomedicine due to their better biocompatibility, higher controllability, stronger deformation restorability and biodegradability compared with shape memory alloys and shape memory ceramics. This review will introduce the structural principles of shape memory polymers and summarize their applications in the treatment of vascular diseases, especially in endovascular therapy. At the same time, the related technical problems and the future of shape memory polymers are prospected. With the continuous development of processing technology and materials, it can be predicted that shape memory polymers will be more widely used in the medical field.
ObjectiveTo investigate the biocompatibility and immunogenicity of the tracheal matrix decellularized by sodium perchlorate (NaClO4).MethodsBone marrow mesenchymal stem cells (BMSCs) were divided from 2-month-old New Zealand white rabbits. The trachea of 6-month-old New Zealand white rabbits were trimmed to a length of 1.5 cm and randomly divided into control group (group A1, n=5, just stripped the loose connective tissue outside the trachea) and experimental group (group B1, n=5, decellularized by improved NaClO4 immersion method). The cytotoxicity of the scaffold leaching solution was detected by MTT assay, and the major histocompatibility complex (MHC) expression was detected by immunohistochemical method. The 4th generation of BMSCs were seeded onto the scaffold of 2 groups, and the cell activity around the material was observed by inverted microscope after Giemsa staining at 48 hours, while the cells states on the scaffold were observed at 7 and 14 days after culturing by scanning electron microscope. Another 10 6-month-old New Zealand white rabbits were randomly divided into control group (group A2, n=5) and experimental group (group B2, n=5), which implanted the native trachea and decellularized tracheal matrix into the subcutaneous sac of the back neck, respectively. The serum immunoglobulin IgM and IgG contents were analysed at 5, 10, 15, 20, 25, and 30 days after operation, and HE staining observation was performed at 30 days after operation.ResultsMTT assay showed that the proliferation activity of BMSCs cultured in the leach liquor of group B1 was well, showing no significant difference when compared with group A1 and negative control group with pure culture medium (P>0.05). The immunohistochemical staining showed that the decellularized process could significantly reducing the antigenicity of matrix materials. Giemsa staining showed that BMSCs grew well around the two tracheal matrixs (groups A1 and B1) in vitro. Scanning electron microscope observation showed that the cells were attached to the outer wall of the tracheal material in group A1, which present a flat, round, oval shaped, tightly arranged cells and cluster distribution; and in group B1, the cells formed a single lamellar sheet cover the outer wall of the tracheal material, whose morphology was similar to that in group A1, and the growth trend was better. In vivo experimental results showed that the rejection of group B2 was lower than that of group A2. The contens of IgM and IgG in group A2 were significantly higher than those in group B2 at each time point after operation (P<0.05). HE staining showed no signs of rejection, macrophagocyte, or lymphocyte infiltration occurred, and the collagen fibers maintained their integrity in group B2.ConclusionThe decellularized matrix treated by NaClO4 has a fine biocompatibility, while its immunogenicity decreased, and it is suitable for the scaffold material for constructing of tissue engineered trachea.
Objective To investigate the biocompatibility of type I collagen scaffold with rat bone marrow mesenchymal stem cell (BMSCs) and its role on proliferation and differentiation of BMSCs so as to explore the feasibility of collagen scaffold as neural tissue engineering scaffold. Methods Type I collagen was used fabricate collagen scaffold. BMSCs were isolated by density gradient centrifugation. The 5th passage cells were used to prepare the collagen scaffold-BMSCs complex. The morphology of collagen scaffold and BMSCs was observed by scanning electron microscope (SEM) and HE staining. The cell proliferation was measured by MTT assay at 1, 3, 5, and 7 days after culturein vitro. After cultured on collagen scaffold for 24 hours, the growth and adhesion of green fluorescent protein positive (GFP+) BMSCs were observed by confocal microscopy and live cell imaging. Results The confocal microscopy and live cell imaging results showed that GFP+ BMSCs uniformly distributed in the collagen scaffold; cells were fusiform shaped, and cell process or junctions between the cells formed in some cells, indicating good cell growth in the collagen scaffold. Collagen scoffold had porous fiber structure under SEM; BMSCs could adhered to the scaffold, with good cell morphology. The absorbance (A) value of BMSCs on collagen scaffold at 5 and 7 days after culture was significantly higher than that of purely-cultured BMSCs (t=4.472,P=0.011;t=4.819,P=0.009). HE staining showed that collagen scaffold presented a homogeneous, light-pink filament like structure under light microscope. BMSCs on the collagen scaffold distributed uniformly at 24 hours; cell displayed various forms, and some cells extended multiple processes at 7 days, showing neuron-like cell morphology. Conclusion Gelatinous collagen scaffold is easy to prepare and has superior biocompatibility. It is a promising scaffold for neural tissue engineering.
ObjectiveTo study the biocompatibility of bioprosthetic heart valve material with a non-glutaraldehyde-based treatment, and to provide the safety data for the clinical application. MethodsAll the tests were conducted according to GB/T16886 standards. The in vitro cytotoxicity was determined by methyl thiazolyl tetrazolium assay. Fifteen guinea pigs were divided into a test group (n=10) and a control group (n=5) in the skin sensitization test. Three New Zealand white rabbits were used in the intradermal reactivity test. Five sites on both sides of the rabbit back were set as test sites and control sites, respectively. In the acute systemic toxicity test, a total of 20 ICR mice were randomly assigned to 4 groups: a test group (polar medium), a control group (polar medium), a test group (non-polar medium) and a control group (non-polar medium), 5 in each group. Forty SD rats were divided into a test group (n=20) and a control group (n=20) in the subchronic systemic toxicity test. ResultsThe viability of the 100% extracts of the bioprosthetic heart valve material with a non-glutaraldehyde-based treatment was 75.2%. The rate of positive reaction was 0.0%. The total intradermal reactivity test score was 0. There was no statistical difference in the body weight between the test group and control group in the acute systemic toxicity test. There was no statistical difference in the body weight, organ weight, organ weight/body weight ratio, blood routine test or blood biochemistry between the test group and control group in the subchronic systemic toxicity test. ConclusionThe bioprosthetic heart valve material with a non-glutaraldehyde-based treatment has satisfying biocompatibility, which conforms to relevant national standards. The material might be a promising material for application in valve replacement.
Silicon carbide (SiC) film and silicon dioxide (SiO2) film were deposited on the surface of carbon/carbon composite (C/C) by low pressure chemical vapor deposition (LPCVD). The biocompatibility of the three carbon-based composites, e. g. C/C, C/C-SiC, C/C-SiO2 were investigated by cytotoxicity test, cell direct contact and cell adhesion experiments. Cytotoxicity, cell direct contact and cell adhesion showed that the three materials had no toxic effect on mouse fibroblasts (L929 cells). However, the particles dropped off from the three materials had a great impact on evaluation accuracy of the thiazolyl blue (MTT) test. More the particles were lost, more growth inhibition to L929 cells. The evaluation accuracy of MTT method can be kept with the filtered extract of materials. Furthermore, the results of surface particles shedding experiment showed that the amount of surface particles shed from C/C-SiO2 was the most, followed by C/C and C/C-SiC in 72 hours. Particles shedding curves showed there was a peak reached at eighth hour and then declined to the thirty-sixth hour. The filtrate analysis showed that there was no ion exchange between the three materials and simulated body fluid (SBF) solution. The results of this study on biocompatibility of carbon-based composites have certain guiding significance for their future application in clinical filed.
ObjectiveThe tissue engineered osteochondral integration of multi-layered scaffold was prepared and the related mechanical properties and biological properties were evaluated to provide a new technique and method for the repair and regeneration of osteochondral defect.MethodsAccording to blend of different components and proportion of acellular cartilage extracellular matrix of pig, nano-hydroxyapatite, and alginate, the osteochondral integration of multi-layered scaffold was prepared by using freeze-drying and physical and chemical cross-linking technology. The cartilage layer was consisted of acellular cartilage extracellular matrix; the middle layer was consisted of acellular cartilage extracellular matrix and alginate; and the bone layer was consisted of nano-hydroxyapatite, alginate, and acellular cartilage extracellular matrix. The biological and mechanics characteristic of the osteochondral integration of multi-layered scaffold were evaluated by morphology observation, scanning electron microscope observation, Micro-CT observation, porosity and pore size determination, water absorption capacity determination, mechanical testing (compression modulus and layer adhesive strength), biocompatibility testing [L929 cell proliferation on scaffold assessed by MTT assay, and growth of green fluorescent protein (GFP)-labeled Sprague Dawley rats’ bone marrow mesenchumal stem cells (BMSCs) on scaffolds].ResultsGross observation and Micro-CT observation showed that the scaffolds were closely integrated with each other without obvious discontinuities and separation. Scanning electron microscope showed that the structure of the bone layer was relatively dense, while the structure of the middle layer and the cartilage layer was relatively loose. The pore structures in the layers were connected to each other and all had the multi-dimensional characteristics. The porosity of cartilage layer, middle layer, and bone layer of the scaffolds were 93.55%±2.90%, 93.55%±4.10%, and 50.28%±3.20%, respectively; the porosity of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The pore size of the three layers were (239.66±35.28), (153.24±19.78), and (82.72±16.94) μm, respectively, showing significant differences between layers (P<0.05). The hydrophilic of the three layers were (15.14±3.15), (13.65±2.98), and (5.32±1.87) mL/g, respectively; the hydrophilic of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The compression modulus of the three layers were (51.36±13.25), (47.93±12.74), and (155.18±19.62) kPa, respectively; and compression modulus of the bone layer was significantly higher than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The osteochondral integration of multi-layered scaffold was tightly bonded with each layer. The layer adhesive strength between the cartilage layer and the middle layer was (18.21±5.16) kPa, and the layer adhesive strength between the middle layer and the bone layer was (16.73±6.38) kPa, showing no significant difference (t=0.637, P=0.537). MTT assay showed that L929 cells grew well on the scaffolds, indicating no scaffold cytotoxicity. GFP-labeled rat BMSCs grew evenly on the scaffolds, indicating scaffold has excellent biocompatibility.ConclusionThe advantages of three layers which have different performance of the tissue engineered osteochondral integration of multi-layered scaffold is achieved double biomimetics of structure and composition, lays a foundation for further research of animal in vivo experiment, meanwhile, as an advanced and potential strategy for osteochondral defect repair.
ObjectiveTo observe the long-term outcome and biocompatibility of the porcine collagen membrane (DermalGen) after xenotransplantation in vivo.MethodsTwenty Sprague Dawley rats were randomly divided into 2 groups (n=10). DermalGen were implanted subcutaneously into the dorsum of rats in experimental group, and the rats in control group were treated with sham-operation. At 3, 7, and 15 days and 1, 3, 6, and 12 months after operation, the samples of experimental group were harvested and gross observation, histological observation, CD31 immunohistochemical staining, and transmission electron microscope observation were taken to observe the inflammatory reaction, angiogenesis, and collagen arrangement. The skin tissues of the control group at 12 months were observed and compared.ResultsAll incisions healed in experimental group, without obvious swelling and inflammatory reaction. The DermalGen was closely contact with the surrounding tissue without obvious rejection, and it was still legible at 12 months. Histological observation of experimental group showed that the infiltration of fibroblasts and inflammatory cells were seen at 7 days. More capillaries and fibroblast cells were seen and the inflammatory response gradually faded at 15 days and 1 month. There were abundant vessels and cells in the DermalGen at 3 months. The angiogenesis and fibroblasts decreased gradually, and the collagen started to format and margin blended simultaneously at 6 and 12 months. The inflammatory cells in experimental group at 15 days and 1 month were significantly more than that in control group (P<0.05), and no significant difference was found at 12 months between experimental group and control group (P>0.05). Immunohistochemical staining of experimental group showed that the angiogenesis changed obviously with the time, and the density of vessels decreased significantly at 12 months. Compared with control group, the possitive expressions of CD31 in experimental group at 15 days and 12 months after operation were significantly decreased (P<0.05), and were significantly increased at 1 month (P<0.05). Transmision electron microscope observation showed that the arrangement of collagen in grafted DermalGen had no obvious changed when compared with the DermalGen, and vascular endothelial cell, capillarypericytes and fibroblast cells could be seen inside.ConclusionThe DermalGen structure is stable after long-term xenotransplantation and with good tolerogenic property in vivo.
Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.
In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.