ObjectiveTo analyze the expression of cold-induced RNA-binding protein (CIRBP) in lung adenocarcinoma and its clinical significance based on bioinformatics, in order to provide a new direction for the study of therapeutic targets for lung adenocarcinoma.MethodsThe CIRBP gene expression data and patient clinical information data in lung adenocarcinoma tissues and adjacent tissues were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The expression of CIRBP in lung adenocarcinoma was analyzed. Furthermore, its relationship with clinicopathological features and prognosis in patients with lung adenocarcinoma was analyzed. GO and KEGG enrichment analysis were carried out for the screened genes. The CIRBP protein interaction network was constructed by STRING, and the correlation analysis was carried out using the GEPIA online website.ResultsThe expression level of CIRBP gene in lung adenocarcinoma tissues was significantly lower than that in adjacent tissues (P<0.01), and its expression level was correlated with T stage and N stage in clinicopathological features. The prognosis of patients with high CIRBP expression in lung adenocarcinoma was significantly better than that with low CIRBP expression. Univariate and multivariate Cox regression analysis showed that CIRBP was an independent prognostic factor in patients with lung adenocarcinoma. GO functional annotation showed its enrichment in organelle fission, nuclear fission, chromosome separation, and DNA replication, etc. KEGG analysis showed that it was mainly involved in cell cycle and DNA replication. Protein interaction network and GEPIA online analysis showed that the expression level of CIRBP was negatively correlated with the expression level of cyclin B2.ConclusionCIRBP gene is down-regulated in lung adenocarcinoma tissues, and its expression level is closely related to patient prognosis. CIRBP gene may be a potential therapeutic target and prognostic marker for lung adenocarcinoma.
ObjectiveTo investigate the relation between disulfidptosis-related genes (DRGs) and prognosis or immunotherapy response of patients with pancreatic cancer (PC). MethodsThe transcriptome data, somatic mutation data, and corresponding clinical information of the patients with PC in The Cancer Genome Atlas (TCGA) were downloaded. The DRGs mutated in the PC were screened out from the 15 known DRGs. The DRGs subtypes were identified by consensus clustering algorithm, and then the relation between the identified DRGs subtypes and the prognosis of patients with PC, immune cell infiltration or functional enrichment pathway was analyzed. Further, a risk score was calculated according to the DRGs gene expression level, and the patients were categorized into high-risk and low-risk groups based on the mean value of the risk score. The risk score and overall survival of the patients with high-risk and low-risk were compared. Finally, the relation between the risk score and (or) tumor mutation burden (TMB) and the prognosis of patients with PC was assessed. ResultsThe transcriptome data and corresponding clinical information of the 177 patients with PC were downloaded from TCGA, including 161 patients with somatic mutation data. A total of 10 mutated DRGs were screened out. Two DRGs subtypes were identified, namely subtype A and subtype B. The overall survival of PC patients with subtype A was better than that of patients with subtype B (χ2=8.316, P=0.003). The abundance of immune cell infiltration in the PC patients with subtype A was higher and mainly enriched in the metabolic and conduction related pathways as compaired with the patients with subtype B. The mean risk score of 177 patients with PC was 1.921, including 157 cases in the high-risk group and 20 cases in the low-risk group. The risk score of patients with subtype B was higher than that of patients with subtype A (t=14.031, P<0.001). The overall survival of the low-risk group was better than that of the high-risk group (χ2=17.058, P<0.001), and the TMB value of the PC patients with high-risk was higher than that of the PC patients with low-risk (t=5.642, P=0.014). The mean TMB of 161 patients with somatic mutation data was 2.767, including 128 cases in the high-TMB group and 33 cases in the low-TMB group. The overall survival of patients in the high-TMB group was worse than that of patients in the low-TMB group (χ2=7.425, P=0.006). ConclusionDRGs are closely related to the prognosis and immunotherapy response of patients with PC, and targeted treatment of DRGs might potentially provide a new idea for the diagnosis and treatment of PC.
ObjectiveTo explore the mechanism of paucigranulocytic asthma and to find therapeutic target for paucigranulocytic asthma.MethodsGSE143303 data and platform information were downloaded from GEO. Gene Set Enrichment Analysis were performed to construct positive and negative gene-gene interaction network correlation with paucigranulocytic asthma. Differential expression analysis, pathway commonality analysis were performed with R language.ResultsGSE143303 data set contained 47 endobronchial biopsies from adult (16 cases of paucigranulocytic asthma, 13 cases of healthy control). Compared with control group, the paucigranulocytic asthma group had 115 differential genes set (37 positive and 78 negative). The results of pathway commonality analysis showed that the crosslink existed within the negative gene-gene interaction network correlation with paucigranulocytic asthma. Among these, most of the genes belonged to the protein HLA gene family. Differential expression analysis show that HLA-DQB1, HLA-DRB5 were differential genes and TNFRSF13B was significantly downregulated genes in the intersect genes.ConclusionTNFRSF13B, HLA-DQB1, HLA-DRB5 and regulatory networks associated with them are the crucial factors contributing to paucigranulocytic asthma.
Objective To explore the role of high endothelial venule (HEV) in chronic obstructive pulmonary disease (COPD) at the single cell level. Methods A total of 219257 cells from the lung tissues of 18 COPD patients and 28 healthy controls in the GEO public database (GSE136831) were used to analyze the relationship between HEV with T lymphocytes, B lymphocytes, and dendritic cells. Results Endothelial cells were extracted using single cell analysis technique, and sorting out venous endothelium, CCL14, IGFBP7, POSTN were used as marker genes for HEV endothelial cells. The ratio of HEV endothelial cells was also identified as up-regulated expression in COPD. The function of the differential genes of HEV endothelial cells was analyzed, suggesting the presence of immune regulation. By trajectory analysis, it was suggested that the differential genes of HEV endothelial cells were enriched for extracellular matrix deposition in late development. Finally, by receptor-ligand pairing, it was suggested that HEV endothelial cells was recruited through a series of ligands with T lymphocytes, B lymphocytes, and dendritic cells. Conclusions HEV endothelial cells are elevated in COPD and have an immunomodulatory role by secreting a series of ligands after recruiting T lymphocytes, B lymphocytes as well as dendritic cells for immune action. HEV may be a potential target for the study of COPD therapy.
ObjectiveTo identify the core genes involved in the great saphenous varicose veins (GSVVs) through bioinformatics method. MethodsThe transcriptional data of GSVVs and normal great saphenous vein tissues (control tissues) were downloaded from the gene expression omnibus database. The single sample gene set enrichment analysis (ssGSEA) was used to calculate the Hallmark score. The weighted gene co-expression network analysis (WGCNA) combined with machine learning algorithms was used to screen the key genes relevant GSVVs. The protein-protein interaction (PPI) analysis was performed using the String database, and the receiver operating characteristic (ROC) curve was used to reflect the discrimination ability of the target genes for GSVVs. ResultsCompared with the control tissues, there were 548 up-regulated genes and 706 down-regulated genes in the GSVVs tissues, the Hallmark points of KRAS signaling and apical junction were down-regulated, while which of peroxisomes, coagulation, reactive oxygen species pathways, etc. were up-regulated in the GSVVs tissues. A total of 639 differentially expressed genes relevant GSVVs were obtained and 165 interaction relations between proteins encoded by 372 genes, and the top 10 genes with the highest betweeness values, ADAM10, APP, NCBP2, SP1, ASB6, ADCY4, HP, UBE2C, QSOX1, and CXCL1, were located at the center of the interaction relation. And the core genes were mainly related to copper ion homeostasis, neutrophil degranulation G protein coupled receptor signaling, response to oxidative stress, and regulation of amide metabolism processes. The SP1 and QSOX1 were both Hub genes. The expressions of the SP1 and QSOX1 in the GSVVs tissues were significantly up-regulated as compared with the control tissues. The areas under the ROC curves of SP1 and QSOX1 in distinguishing GSVVs tissues from normal tissues were 0.972 and 1.000, respectively. ConclusionsSP1 and QSOX1 are core genes in the occurrence and development of GSVVs. Regulation of SP1 or QSOX1 gene is expected to achieve precise treatment of GSVVs.
Objective To explore depression-related biomarkers and potential therapeutic drugs in order to alleviate depression symptoms and improve patients’ quality of life. Methods From November 2022 to January 2024, gene expression profiles of depression patients and healthy volunteers were downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed to identify differentially expressed genes. Enrichment analysis of these genes was conducted, followed by the construction of a protein-protein interaction network. Finally, Cytoscape software with the Cytohubba plugin was used to identify potential key genes, and drug prediction was performed. Results Through differential expression analysis, a total of 110 differentially expressed genes (74 upregulated and 36 downregulated) were identified. Protein-protein interaction network identified 10 key genes, and differential expression analysis showed that 8 of these genes (CPA3, HDC, IL3RA, ENPP3, PTGDR2, VTN, SPP1, and SERPINE1) exhibited significant differences in expression levels between healthy volunteers and patients with depression (P<0.05). Enrichment analysis revealed that the upregulated genes were significantly enriched in pathways related to circadian rhythm, niacin and nicotinamide metabolism, and pyrimidine metabolism, while the downregulated genes were primarily enriched in extracellular matrix-receptor interaction and interleukin-17 signaling pathways. Six overlapping verification genes (SALL2, AKAP12, GCSAML, CPA3, FCRL3, and MS4A3) were obtained across two datasets using the Wayn diagram. Single-cell sequencing analysis indicated that these genes were significantly expressed in astrocytes and neurons. Mendelian randomization analysis suggested that the FCRL3 gene might play a critical role in the development of depression. Drug prediction analysis revealed several potential antidepressant agents, such as cefotiam, harmol, lincomycin, and ribavirin. Conclusions Circadian rhythm, nicotinate and nicotinamide metabolism, and pyrimidine metabolism pathways may represent potential pathogenic mechanisms in depression. Harmol may be a potential therapeutic drug for the treatment of depression.
Objective To explore the key genes, pathways and immune cell infiltration of bicuspid aortic valve (BAV) with ascending aortic dilation by bioinformatics analysis. Methods The data set GSE83675 was downloaded from the Gene Expression Omnibus database (up to May 12th, 2022). Differentially expressed genes (DEGs) were analyzed and gene set enrichment analysis (GSEA) was conducted using R language. STRING database and Cytoscape software were used to construct protein-protein interaction (PPI) network and identify hub genes. The proportion of immune cells infiltration was calculated by CIBERSORT deconvolution algorithm. Results There were 199 DEGs identified, including 19 up-regulated DEGs and 180 down-regulated DEGs. GSEA showed that the main enrichment pathways were cytokine-cytokine receptor interaction, pathways in cancer, regulation of actin cytoskeleton, chemokine signaling pathway and mitogen-activated protein kinase signaling pathway. Ten hub genes (EGFR, RIMS3, DLGAP2, RAPH1, CCNB3, CD3E, PIK3R5, TP73, PAK3, and AGAP2) were identified in PPI network. CIBERSORT analysis showed that activated natural killer cells were significantly higher in dilated aorta with BAV. Conclusions These identified key genes and pathways provide new insights into BAV aortopathy. Activated natural killer cells may participate in the dilation of ascending aorta with BAV.
ObjectiveTo investigate differentially expressed genes (DEGs) and potential molecular mechanisms between hepatitis C-related hepatocellular carcinoma (HCV-HCC) and hepatitis B-related HCC (HBV-HCC). MethodsThe data of HCV-HCC and HBV-HCC gene expressions were downloaded and integrated from the public gene expression database, and the limma package was used to investigate the DEGs between the HCV-HCC and HBV-HCC samples. The gene set enrichment analysis (GSEA) was used to explore the differences in suppressed or activated gene sets between the HCV-HCC and HBV-HCC samples, and the MCODE was used to explore the key molecular modules, and then the potential biological processes and molecular pathways of the key molecular modules were analyzed. The effect of key genes on survival of the HCC patients was analyzed by the Kaplan-Meier-Plotter database.ResultsIn this study, 119 HBV-HCC samples and 163 HCV-HCC samples were obtained, and the 199 DEGs were screened out. Compared with HBV-HCC, the activated gene sets of HCV-HCC were mainly enriched in the gene sets of inflammation, complement, up-regulation of genes in response to interferon, up-regulation of genes in response to KRAS, genes regulated by the nuclear factor- κB-tumor necrosis factor pathway, and apoptosis. However, the cell cycle-related gene sets were obviously suppressed. Eight key molecular modules enriched by DEGs were found, which included 18 key genes (IFI27, DDX60, MX1, IRF9, OAS3, OAS1, RSAD2, GBP4, HERC6, ISG15, IFIT1, CMPK2, EPSTI1, IFI44, IFI44L, HERC5, IFITM1, CXCL10). GO analysis showed that the biological process was mainly concentrated in the body response related to virus infection, the molecular component was mainly in the host cells, and the molecular function was mainly enriched in the biological combination. KEGG analysis showed that the key genes were mainly involved in the molecular signaling pathway related to virus infection. The survival analysis showed that the 9 key genes (CXCL10, HERC6, DDX60, IFITM1, IFI27, GBP4, IFI44L, IFI44, MX1) were closely related to better prognosis of patients with HCC (HR<1, P<0.05). ConclusionsThere is an essential difference between HBV-HCC and HCV-HCC. Occurrence of HCV-HCC is mainly related to virus infection and immune response induced by the virus. Therefore, for HCV infection, active antiviral treatment is necessary for avoiding hepatitis turning into chronic viral infection and preventing or blocking HCV infection converting to HCC.
Objective To analyze the pathways, biomarkers and diagnostic genes of systemic sclerosis associated interstitial lung disease (SSc-ILD) using bioinformatics. Methods SSc-ILD related gene data sets from April to June 2023 were downloaded from the Gene Expression Omnibus database for differential analysis and enrichment analyses including gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, disease ontology analysis, and gene set enrichment analysis. Least absolute shrinkage and selection operator regression and support vector machine algorithms were applied to screen and take the intersection to get the diagnostic genes and validate the results. Disease-related data were analyzed by immune cell infiltration. Results A total of 178 differential genes were obtained, and enrichment analyses showed that they were related to 5 signaling pathways and associated with 3 diseases. The diagnostic genes screened were TNFAIP3, ID3, and NT5DC2, and immune cell infiltration showed that the diagnostic genes were associated with plasma cells, resting mast cells, activated natural killer cells, macrophage M1 and M2, resting dendritic cells, and activated dendritic cells. Conclusion The screened diagnostic genes and immune cells may be involved in the development of SSc-ILD.
ObjectiveTo investigate the expression and biological function of centromere protein F (CENPF) in non-small cell lung cancer (NSCLC) and the association with prognosis.MethodsThrough retrieving and analyzing the bioinformatics data such as Oncomine database, Human Protein Atlas (HPA), Kaplan-Meier Plotter, STRING and DAVID database, the expression of CENPF in both normal tissues and cancer tissues of lung cancer patients was identified, and the protein interaction network analysis, functional annotation and pathway analysis of CENPF with its associated genes were carried out.ResultsCENPF was overexpressed in lung adenocarcinoma tissues, but not in normal tissues. The median overall survival (OS) of NSCLC patients with low expression of CENPF was significantly longer than that of patients with high expression of CENPF. Further sub-analysis showed that low expression group from lung adenocarcinoma patients had longer median disease-free survival and OS compared with high expression group patients. CENPF and its associated hub genes mainly affected the protein K11-linked ubiquitination in biological process, anaphase-promoting complex (APC) in cell composition, ATP binding in molecular function, and cell cycle in KEGG pathway.ConclusionCENPF is regulated in tumorigenesis and progression of NSCLC, and its protein expression level has the value of early diagnosis and prognosis evaluation in lung adenocarcinoma. It is suggested that CENPF gene can be a potential target for molecular targeted therapy of NSCLC.