west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biomaterial" 23 results
  • Novel nano-hydroxyapatite/polyurethane composite scaffold in the treatment of chronic osteomyelitis

    ObjectiveTo evaluate the bone repair efficacy of the new nano-hydroxyapatite (n-HA)/polyurethane (PU) composite scaffold in the treatment of chronic osteomyelitis in tibia.MethodsA novel levofloxacin@mesoporous silica microspheres (Lev@MSNs)/n-HA/PU was successfully synthesized. Its surface structure was observed by scanning electron microscopy (SEM). Fifty adult female New Zealand rabbits were randomly selected, and osteomyelitis was induced in the right tibia of the rabbit by injecting bacterial suspension (Staphylococcus aureus; 3×107 CFU/mL), which of the method was described by Norden. A total of 45 animals with the evidence of osteomyelitis were randomly divided into 4 groups, and the right medullary cavity of each animal was exposed. Animals in the blank control group (group A, n=9) were treated with exhaustive debridement only. The remaining animals were first treated by exhaustive debridement, and received implantations of 5 mg Lev@PMMA (group B, n=12), 1 mg Lev@MSNs/n-HA/PU (group C, n=12), and 5 mg Lev@MSNs/n-HA/PU (group D, n=12), respectively. At 12 weeks postoperatively, the right tibia of rabbits were observed by X-ray film, and then gross observation, methylene blue/acid fuchsin staining, and SEM observation of implant-bone interface, as well as biomechanical test (measuring the maximal compression force) were performed.ResultsX-ray films showed that the infection were severer than those of preoperation in group A, while the control of inflammation and bone healing of rabbits in group D were obviously better than those at preoperation. The gross observation showed extensive bone destruction in group A, a significant gap between bone tissue and the material in groups B and C, and close combination between bone tissue and the material in group D. The histology of the resected specimens showed that there was no obvious new bone formation around the materials in groups B and C, and there was abundant new bone formation around the periphery and along the voids of the materials and active bone remodeling in group D. The SEM observation of the bone-implant interface demonstrated that no new bone formation was observed at the bone-implant interface in groups B and C. However, bony connections and blurred boundaries were observed between the material and host bone tissue in group D. The biomechanical test showed the maximal compression force of groups B and D were significantly higher than that of groups A and C (P<0.05), but there was no significant difference between groups B and D (P>0.05).ConclusionThe novel synthetic composite Lev@MSNs/n-HA/PU exhibit good antibacterial activities, osteoconductivity, and biomechanical properties, and show great potential in the treatment of chronic osteomyelitis of rabbits.

    Release date:2018-07-12 06:19 Export PDF Favorites Scan
  • Applications of marine-derived chitosan and alginates in biomedicine

    Marine-derived biopolymers are excellent raw materials for biomedical products due to their abundant resources, good biocompatibility, low cost and other unique functions. Marine-derived biomaterials become a major branch of biomedical industry and possess promising development prospects since the industry is in line with the trend of " green industry and low-carbon economy”. Chitosan and alginates are the most commonly commercialized marine-derived biomaterials and have exhibited great potential in biomedical applications such as wound dressing, dental materials, antibacterial treatment, drug delivery and tissue engineering. This review focuses on the properties and applications of chitosan and alginates in biomedicine.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Comparative Studies on the Material Performances of Natural Bone-like Apatite from Different Bone Sources

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone,bovine bone,pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800℃ for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00±7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73±0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.

    Release date: Export PDF Favorites Scan
  • Research progress on the technique and materials for three-dimensional bio-printing

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • Assessment Method of Remnantα-1, 3-galactosyle Epitopes in Animal Tissue-derived Biomaterials

    The aim of this study was to establish an assessment method for determiningα-Gal(α-1, 3-galactosyle) epitopes contained in animal tissue or animal tissue-derived biological materials with ELISA inhibition assay. Firstly, a 96 well plate was coated with Galα-1, 3-Gal/bovine serum albumin (BSA) as a solid phase antigen and meanwhile, the anti-α-Gal M86 was used to react withα-Gal antigens which contained in the test materials. Then, the residual antibodies (M86) in the supernatant of M86-Gal reaction mixture were measured using ELISA inhibition assay by theα-Gal coating plate. The inhibition curve of the ELISA inhibition assay, the R2=0.999, was well established. Checking using bothα-Gal positive materials (rat liver tissues) andα-Gal negative materials (human placenta tissues) showed a good sensitivity and specificity. Based on the presently established method, theα-Gal expression profile of rat tissues, decellular animal tissue-derived biological materials and porcine dermal before and after decellular treatment were determined. The M86 ELISA inhibition assay method, which can quantitatively determine theα-Gal antigens contained in animal tissues or animal tissue-derived biomaterials, was refined. This M86 specific antibody based-ELISA inhibition assay established in the present study has good sensitivity and specificity, and could be a useful method for determining remnantα-1, 3Gal antigens in animal tissue-derived biomaterials.

    Release date: Export PDF Favorites Scan
  • Osteoimmunomodulatory effects of inorganic biomaterials in the process of bone repair

    Objective To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. Methods A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. Results Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. Conclusion Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells

    Objective To review the research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells (MSCs). Methods An extensive review of the relevant literature on bone repair biomaterials, particularly those designed to recruit endogenous MSCs, was conducted, encompassing both domestic and international studies from recent years. The construction methods and optimization strategies for these biomaterials were summarized. Additionally, future research directions and focal points concerning this material were proposed. Results With the advancement of tissue engineering technology, bone repair biomaterials have increasingly emerged as an ideal solution for addressing bone defects. MSCs serve as the most critical “seed cells” in bone tissue engineering. Historically, both MSCs and their derived exosomes have been utilized in bone repair biomaterials; however, challenges such as limited sources of MSCs and exosomes, low survival rates, and various other issues have persisted. To address these challenges, researchers are combining growth factors, bioactive peptides, specific aptamers, and other substances with biomaterials to develop constructs that facilitate stem cell recruitment. By optimizing mechanical properties, promoting vascular regeneration, and regulating the microenvironment, it is possible to create effective bone repair biomaterials that enhance stem cell recruitment. Conclusion In comparison to cytokines, phages, and metal ions, bioactive peptides and aptamers obtained through screening exhibit more specific and targeted recruitment functions. Future development directions for bone repair biomaterials will involve the modification of peptides and aptamers with targeted recruitment capabilities in biological materials, as well as the optimization of the mechanical properties of these materials to enhance vascular regeneration and adjust the microenvironment.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • Progress and challenges of poly (L-lactic acid) membrane in preventing tendon adhesion

    ObjectiveTo review the research progress and challenges of poly (L-lactic acid) (PLLA) membrane in preventing tendon adhesion. MethodsThe relevant literature at home and abroad in recent years was extensively searched, covering the mechanism of tendon adhesion formation, the adaptation challenge and balancing strategy of PLLA, the physicochemical modification of PLLA anti-adhesion membrane and its application in tendon anti-adhesion. In this paper, the research progress and modification strategies of PLLA membranes were systematically reviewed from the three dimensions of tissue adaptation, mechanical adaptation, and degradation adaptation. ResultsThe three-dimensional adaptation of PLLA membrane is optimized by combining materials (such as hydroxyapatite, polycaprolactone), structural design (multilayer/gradient membrane), and drug loading (anti-inflammatory drug). The balance between anti-adhesion and pro-healing is achieved, the mechanical adaptation significantly improve, and degradation is achieved (targeting the degradation cycle to 2-4 weeks to cover the tendon repair period). ConclusionIn the future, it is necessary to identify the optimal balance point of three-dimensional fitness, unify the evaluation criteria and solve the degradation side effects through the co-design of physicochemical modification and drug loading system to break through the bottleneck of clinical translation.

    Release date:2025-09-01 10:12 Export PDF Favorites Scan
  • Physical, chemical, and biological property of silk reinforced polycaprolactone composites for bone tissue engineering

    Objective To develop a biodegradable implantable bone material with compatible mechanics with the bone tissue, providing a new biomaterial for clinical bone repair and regeneration. Methods Silk reinforced polycaprolactone composites (SPC) containing 20%, 40%, and 60% silk were prepared by layer-by-layer assembly and hot-pressing technology. Macroscopic morphology was observed and microstructure were observed by scanning electron microscopy, compressive mechanical properties were detected by compression test, surface wettability was detected by surface contact angle test, degradation of materials was observed after soaking in PBS for 180 days, and proliferation of MC3T3-E1 cells was detected by cell counting kit 8 assay. Six Sprague Dawley rats were subcutaneously implanted with polycaprolactone (PCL) and 20%-SPC, respectively. Masson staining was used to analyze the in vivo degradation behavior and vascularization effect within 180 days. Results The pore defects of the three SPC sections were relatively few. In the range of 20% to 60%, as the silk content increased and the PCL content decreased, the interlayer spacing of silk fabric decreased, and the fibers almost covered the entire cross-section. The compressive modulus and compressive strength of SPC showed an increasing trend, and the compressive modulus of 60%-SPC was slightly lower than that of 40%-SPC. There were significant differences in compressive modulus and compressive strength between the materials (P<0.05). In vitro simulated fluid degradation experiments showed that the mass loss of the three types of SPC after 180 days of degradation was within 5%, with the highest mass loss observed in 60%-SPC. The differences in mass loss between the materials were significant (P<0.05). As the silk content increased, the static water contact angle of each material gradually decreased, and all could promote the proliferation of MC3T3-E1 cells. The subcutaneous degradation experiment in rats showed that 20%-SPC began to degrade at 30 days after implantation, and material degradation and vascularization were significant at 180 days, which was in sharp contrast to PCL. Conclusion SPC has the mechanical and hydrophilic properties that are compatible with bone tissue. It maintains its mechanical strength for a long time in a simulated body fluid environment in vitro, and achieves dynamic synchronization of material degradation, tissue regeneration, and vascularization through the body’s immune regulation mechanism in vivo. It is expected to provide a new type of implant material for clinical bone repair.

    Release date:2024-10-17 05:17 Export PDF Favorites Scan
  • Research progress on medical devices of polyhydroxyalkanoate in orthopedics

    ObjectiveTo review the research progress of natural biomaterial polyhydroxyalkanoate (PHA) in orthopedics. Methods The literature concerning PHA devices for bone defects, bone repair, and bone neoplasms, respectively, in recent years was extensively consulted. The three aspects of the advantages of PHA in bone repair, the preparation of PHA medical devices for bone repair and their application in orthopedics were discussed. ResultsDue to excellent biodegradability, biocompatibility, and potential osteoinduction, PHA is a kind of good bone repair material. In addition to the traditional PHA medical implants, the use of electrostatic spinning and three-dimensional printing can be designed to various functional PHA medical devices, in order to meet the orthopedic clinical demands, including the bone regeneration, minimally invasive bone tissue repair by injection, antibacterial bone repair, auxiliary establishment of three-dimensional bone tumor model, directed osteogenic differentiation of stem cells, etc. ConclusionAt present, PHA is a hotspot of biomaterials for translational medicine in orthopedics. Although they have not completely applied in the clinic, the advantages of repair in bone defects have been gradually reflected in tissue engineering, showing an application prospect in orthopedics.

    Release date:2023-08-09 01:37 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content