The anterior cruciate ligament (ACL) reconstruction mostly relies on the experience of surgeons. To improve the effectiveness and adaptability of the tension after ACL reconstruction in knee joint rehabilitation, this paper establishes a lateral force measurement model with relaxation characteristics and designs an on-line stiffness measurement system of ACL. In this paper, we selected 20 sheep knee joints as experimental material for the knee joint stability test before the ACL reconstruction operation, which were divided into two groups for a comparative test of single-bundle ACL reconstruction through the anterolateral approach. The first group of surgeons carried out intraoperative detection with routine procedures. The second group used ACL on-line stiffness measurement system for intraoperative detection. After that, the above two groups were tested for postoperative stability. The study results show that the tension accuracy is (− 2.3 ± 0.04)%, and the displacement error is (1.5 ± 1.8)%. The forward stability, internal rotation stability, and external rotation stability of the two groups were better than those before operation (P < 0.05). But the data of the group using the system were closer to the preoperative knee joint measurement index, and there was no significant difference between them (P > 0.05). The system established in this paper is expected to help clinicians judge the ACL reconstruction tension in the operation process and effectively improve the surgical effect.
ObjectiveTo observe the changes in the biomechanical properties of the cornea of diabetic retinopathy (DR), and analyze its relationship with the degree of DR. MethodsA retrospective study. From September 2020 to February 2021, 83 patients with type 2 diabetes (T2DM) combined with DR treated in the Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 83 eyes (DR group), 30 patients with T2DM without DR recruited from the outpatient clinic 30 eyes (NDR group) and 30 eyes of non-diabetes patients (NDM group) were included in the study. All left eyes were chose as the study eye. Among the 83 eyes in the DR group, 39 eyes were non-proliferative DR (NPDR) and 44 eyes were proliferative DR (PDR). Based on this, they were divided into NPDR group and PDR group. There was no statistically significant difference in age (t=1.10) and sex ratio (χ2=0.46) among patients in the DR group, NDR group, and NDM group (P>0.05); body mass index (t=3.74), glycosylated hemoglobin (t=35.02) and the length of the eye axis (t=5.51), the difference was statistically significant (P<0.05). The eye response analyzer (ORA) was used to measure the corneal hysteresis (CH), corneal resistance factor (CRF), Goldman related intraocular pressure (IOPg), and corneal compensatory intraocular pressure (IOPcc). The corneal topography was used to measure the central corneal thickness (CCT) of the examined eye. The differences of CCT, IOPcc, IOPg, CH, CRF among multiple groups were compared by one-way analysis of variance. Multiple linear regression was used to analyze the relationship between CH, CRF and related influencing factors in DR patients. ResultsThere were statistically significant differences in CCT, IOPcc, IOPg, CH, and CRF among the eyes of the DR group, NDR group, and NDM group (F=3.71, 5.60, 9.72, 9.02, 21.97; P<0.05). Pairwise comparisons were between groups, CH, CRF: the difference between the DR group and the NDM group and the NDR group was statistically significant (P<0.05); CCT: the difference between the DR group and the NDM group was statistically significant (P<0.05), and The difference in the NDR group was not statistically significant (P>0.05). CCT, CH, CRF: the difference between the NDR group and the NDM group was not statistically significant (P>0.05). The results of multiple linear regression analysis showed that CCT and IOPcc in DR patients were independent influencing factors of CH [CCT: β=0.01, 95% confidence interval (CI) 0.01-0.03, P=0.013; IOPcc: β=-0.15, 95%CI -0.25--0.05, P=0.005]; Age, CCT, IOPcc were independent influencing factors of CRF [Age: β=-0.06, 95%CI -0.09--0.03, P<0.001; CCT: β=0.01, 95%CI 0.00-0.02, P=0.049; IOPcc: β=0.16, 95%CI 0.07-0.25, P=0.001]. The comparison of CCT, CH, CRF, adjusted CH, and adjusted CRF of the eyes in the NDR group, NPDR group, and PDR group were statistically significant (F=3.76, 5.36, 12.61, 6.59, 10.41; P<0.05). Pairwise comparison between groups, CH, CRF, adjusted CH, adjusted CRF: the difference between the NPDR group, the PDR group and the NDR group was statistically significant (P<0.05), and the difference between the PDR group and the NPDR group was not statistically significant (P>0.05); CCT: The difference between NPDR group and NDR group, PDR group and NPDR group was not statistically significant (P>0.05), and the difference between PDR group and NDR group was statistically significant (P<0.05). ConclusionThe CH and CRF of eyes with T2DM and DR are elevated; CCT and IOPcc are independent influencing factors of CH, and age, CCT and IOPcc are independent influencing factors of CRF.
Objective To analyze the relationship between the collateral ligament attachment and the epicondylar axis with rotational alignment of the femoral component in the total knee arthroplasty(TKA).Methods Twenty normal cadaver knee joints were anatomized and 2 holes were drilled on the distal femur from the deep and superficial insertions of the medial collateral ligaments to the lateral condylar part, respectively. Then, all the knees were scanned by MRI on the sagittal plane, making the drilled hole located relatively to the posterior condylar joint surface on the axial plane, and the posterior condylar angle (PCA) and thecondylar twist angle (CTA) were measured.Results The colateral ligament had the deep and superficial parts, and the deep part was strained during the knee flexing. PCA and CTA were 4.50±1.26° and 7.10±0.30° respectively, and there was a significant difference between them(P<0.05), which were significantly greater than those reported abroad. On the sagittal plane, there wasno significant difference between the radiuses of the posterior medial and lateral condylar circles (Pgt;0.05). The distance from the center of the posterior condylar circle to the deep insertion of the medial collateral ligament (MCL) (d1) was 4.22±0.20 mm, and the distance to the superficial insertionof MCL (d2) was 7.36±0.13 mm. The difference between d1 and d2 was significant(Plt;0.05). Conclusion The center of the posterior condylar circle passes from the deep insertion of the collateral ligament, which can be regarded as a fixed flexionextension axis of the knee. By releasing the different parts of the collateral ligaments, the balance of the flexion and extension gap canbe obtained, and then varus, valgus or flexed contracture deformity of the kneecan be realigned. Besides, the rotational orientation of the femoral prothesis can be made by a reference to the epicondylar insertion of the collateral ligament.
ObjectiveTo evaluate and compare knee joint stability of grade Ⅲ medial collateral ligament (MCL) injury treated by single-bundle and anatomical double-bundle reconstruction methods, thus providing biomechanical basis for clinical treatment.MethodsNine fresh cadaver specimens of normal human knee joints were randomly divided into 3 groups on average. In intact MCL group: The anterior cruciate ligament (ACL) was detached and reconstructed with single-bundle techniques, and the MCL was intact. In single-bundle and double-bundle reconstruction groups, the superficial MCL (sMCL), posterior oblique ligament (POL), and ACL were all detached to manufacturing grade Ⅲ MCL injury models. After single-bundle reconstruction of ACL, the sMCL single-bundle reconstruction and anatomical double-bundle reconstruction of sMCL and POL were performed, respectively. Biomechanical evaluation indexes included anterior tibial translation (ATT), internal rotation (IR), valgus rotation (VAL), and stresses of MCL and ACL under internal rotation and valgus torques at different ranges of motion of the knee joint.ResultsThere was no significant difference in ATT at full extension and flexion of 15°, 30°, 45°, 60°, and 90° between groups (P>0.05). At full extension and flexion of 15°, the IR and VAL were significantly higher in single-bundle reconstruction group than in double-bundle reconstruction group and intact MCL group (P<0.05). At flexion of 30°, the VAL was significantly higher in single-bundle reconstruction group than in double-bundle reconstruction group and intact MCL group (P<0.05). While there was no significant difference between double-bundle reconstruction group and intact MCL group (P>0.05). There was no significant difference in the stresses of MCL and ACL between groups under the internal rotation and valgus torques at all positions (P>0.05).ConclusionMCL anatomical double-bundle reconstruction can acquire better valgus and rotational stability of the knee joint compared with single-bundle reconstruction.
Objective To review the research progress of pathological changes of glenohumeral capsule in patients with recurrent shoulder anterior dislocation (RSAD). Methods The literature on shoulder capsules, both domestic and international, was reviewed. The anatomy, histology, and molecular biology characteristics of the glenohumeral capsule in RSAD patients were summarized. Results Anatomically, the glenohumeral capsule is composed of four distinct parts: the upper, lower, anterior, and posterior sections. The thickness of these sections is uneven, and the stability of the capsule is further enhanced by the presence of the glenohumeral and coracohumeral ligaments. Histologically, the capsule tissue undergoes adaptive changes following RSAD, which improve its ability to withstand stretching and deformation. In the realm of molecular biology, genes associated with the regulation of structure formation, function, and extracellular matrix homeostasis of the shoulder capsule’s collagen fibers exhibit varying degrees of expression changes. Specifically, the up-regulation of transforming growth factor β1 (TGF-β1), TGF-β receptor 1, lysyl oxidase, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 facilitates the repair of the joint capsule, thereby contributing to the maintenance of shoulder joint stability. Conversely, the up-regulation of collagen type Ⅰ alpha 1 (COL1A1), COL3A1, and COL5A1 is linked to the recurrence of shoulder anterior dislocation, as these changes reflect the joint capsule’s response to dislocation. Additionally, the expressions of tenascin C and fibronectin 1 may play a role in the pathological processes occurring during the early stages of RSAD. ConclusionGlenohumeral capsular laxity is both a consequence of RSAD and a significant factor contributing to its recurrence. While numerous studies have documented alterations in the shoulder capsule following RSAD, further research is necessary to confirm the specific pathological anatomy, histological, and molecular biological changes involved.
The human spine injury and various lumbar spine diseases caused by vibration have attracted extensive attention at home and abroad. To explore the biomechanical characteristics of different approaches for lumbar interbody fusion surgery combined with an interspinous internal fixator, device for intervertebral assisted motion (DIAM), finite element models of anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF) and lateral lumbar interbody fusion (LLIF) are created by simulating clinical operation based on a three-dimensional finite element model of normal human whole lumbar spine. The fusion level is at L4–L5, and the DIAM is implanted between spinous process of L4 and L5. Transient dynamic analysis is conducted on the ALIF, TLIF and LLIF models, respectively, to compute and compare their stress responses to an axial cyclic load. The results show that compared with those in ALIF and TILF models, contact forces between endplate and cage are higher in LLIF model, where the von-Mises stress in endplate and DIAM is lower. This implies that the LLIF have a better biomechanical performance under vibration. After bony fusion between vertebrae, the endplate and DIAM stresses for all the three surgical models are decreased. It is expected that this study can provide references for selection of surgical approaches in the fusion surgery and vibration protection for the postsurgical lumbar spine.
ObjectiveTo evaluate the effect of nickel-titanium three-dimensional memory alloy mesh combined with autologous bone for living model of canine tibial plateau collapse fracture by biomechanical testing. MethodsSixteen healthy 12-month-old Beagle dogs were randomly divided into 4 group, 4 dogs in each group. The dogs were used to establish the tibial plateau collapse fracture model in groups A, B, and C. Then, the nickel-titanium three-dimensional memory alloy mesh combined with autologous bone (the fibula cortical bone particles), the artificial bone (nano-hydroxyapatite), and autologous fibula cortical bone particles were implanted to repair the bone defects within 4 hours after modeling in groups A, B, and C, respectively; and the plate and screws were fixed outside the bone defects. The dogs were not treated in group D, as normal control. At 5 months after operation, all animals were sacrificed and the tibial specimens were harvested and observed visually. The destructive axial compression experiments were carried out by the biomechanical testing machine. The displacement and the maximum failure load were recorded and the axial stiffness was calculated. ResultsAll animals stayed alive after operation, and all incisions healed. After 1-3 days of operation, the animals could stand and move, and no obvious limb deformity was found. The articular surfaces of the tibial plateau specimens were completely smooth at 5 months after operation. No obvious articular surface collapse was observed. The displacement and maximum failure load of specimens in groups A and D were significantly higher than those in groups B and C (P<0.05). But no significant difference was found between groups A and D and between groups B and C (P>0.05). ConclusionThe nickel-titanium three-dimensional memory alloy mesh combined with autologous bone for subarticular bone defect of tibial plateau in dogs has good biomechanical properties at 5 months after operation, and has better axial stiffness when compared with the artificial bone and autologous bone graft.
Objective To investigate the effect of domestic porous tantalum encapsulated with pedicled fascial flap on repairing of segmental bone defect in rabbits’ radius. Methods A total of 60 New Zealand white rabbits (aged 6- 8 months and weighing 2.5-3.0 kg) were randomly divided into the experimental group and control group (30 rabbits each group). A 1.5 cm segmental bone defect in right radius was established as the animal model. The porous tantalums encapsulated with pedicled fascial flaps (30 mm×20 mm) were implanted in the created bone defect in the experimental group, and the porous tantalums were only implanted in the control group. X-ray films were observed at the day after operation and at 4, 8, and 16 weeks after operation. Specimens were taken out at 4, 8, and 16 weeks after operation for HE staining and toluidine blue staining observation. The maximum load force and bending strength were detected by three point bending biomechanical test, and the Micro-CT analysis and quantitative analysis of the new bone volume fraction (BV/TV) were performed at 16 weeks after operation to compare the bone defect repair abilityin vivo in 2 groups. Results All incisions healed by first intention without wound infection. At 4, 8, and 16 weeks after operation, the X-ray films showed that the implants were well maintained without apparent displacement. As followed with time, the combination between the implants and host bone became more and more closely, and the fracture line gradually disappeared. HE staining and toluidine blue staining showed that new bone mass and maturity gradually increased at the interface and inside materials in 2 groups, and the new bone gradually growed from the interface to internal pore. At 16 weeks after operation, the three point bending biomechanical test showed that the maximum load force and bending strength in the experimental were (96.54±7.21) N and (91.26±1.76) MPa respectively, showing significant differences when compared with the control group [(82.65±5.65) N and (78.53±1.16) MPa respectively] (t=3.715, P=0.004; t=14.801, P=0.000). And Micro-CT analysis exhibited that there were a large amount of new bone at the interface and the surface of implant materials and inside the materials. The new bone BV/TV in the experimental group (32.63%±3.56%) was significantly higher than that in control group (25.07%±4.34%) (t=3.299, P=0.008). Conclusion Domestic porous tantalum encapsulated with pedicled fascial flap can increase local blood supply, strengthen material bone conduction ability, and promote the segmental bone defect repair.
Objective To investigate the effects of percutaneous cement discoplasty (PCD) and percutaneous cement interbody fusion (PCIF) on spinal stability by in vitro biomechanical tests. Methods Biomechanical test was divided into intact (INT) group, percutaneous lumbar discectomy (PLD) group, PCD group, and PCIF group. Six specimens of L4, 5 (including vertebral bodies and intervertebral discs) from fresh male cadavers were taken to prepare PLD, PCD, and PCIF specimens, respectively. Before treatment and after the above treatments, the MTS multi-degree-of-freedom simulation test system was used to conduct the biomechanical test. The intervertebral height of the specimen was measured before and after the axial loading of 300 N, and the difference was calculated. The range of motion (ROM) and stiffness of the spine in flexion, extension, left/right bending, and left/right rotation under a torque of 7.5 Nm were calculated. Results After axial loading, the change of intervertebral height in PLD group was more significant than that in other three groups (P<0.05). Compared with INT group, the ROM in all directions significantly increased and the stiffness significantly decreased in PLD group (P<0.05). Compared with INT group, the ROM of flexion, extension, and left/right rotation in PCD group significantly increased and the stiffness significantly decreased (P<0.05); compared with PLD group, the ROM of flexion, extension, and left/right bending in PCD group significantly decreased and the stiffness significantly increased (P<0.05). Compared with INT group, ROM of left/right bending in PCIF group significantly decreased and stiffness significantly increased (P<0.05); compared with PLD group, the ROM in all directions significantly decreased and the stiffness significantly increased (P<0.05); compared with PCD group, the ROM of flexion, left/right bending, and left/right rotation significantly decreased and stiffness significantly increased (P<0.05). Conclusion Both PCD and PCIF can provide good biomechanical stability. The former mainly affects the stiffness in flexion, extension, and bending, while the latter is more restrictive on lumbar ROM in all directions, especially in bending and rotation.
This study aims to establish a multi-segment foot model which can be applied in dynamic gait simulation. The effectiveness and practicability of this model were verified afterwards by comparing simulation results with those of previous researches. Based on a novel hybrid dynamic gait simulator, bone models were imported into automatic dynamic analysis of mechanical systems (ADAMS). Then, they were combined with ligaments, fascia, muscle and plantar soft tissue that were developed in ADMAS. Multi-segment foot model was consisted of these parts. Experimental data of human gait along with muscle forces and tendon forces from literature were used to drive the model and perform gait simulation. Ground reaction forces and joints revolution angles obtained after simulation were compared with those of previous researches to validate this model. It showed that the model developed in this paper could be used in the dynamic gait simulation and would be able to be applied in the further research.