Objective To investigate the effects of different puncture levels on bone cement distribution and effectiveness in bilateral percutaneous vertebroplasty for osteoporotic thoracolumbar compression fractures. Methods A clinical data of 274 patients with osteoporotic thoracolumbar compression fractures who met the selection criteria between December 2017 and December 2020 was retrospectively analyzed. All patients underwent bilateral percutaneous vertebroplasty. During operation, the final position of the puncture needle tip reached was observed by C-arm X-ray machine. And 118 cases of bilateral puncture needle tips were at the same level (group A); 156 cases of bilateral puncture needle tips were at different levels (group B), of which 87 cases were at the upper 1/3 layer and the lower 1/3 layer respectively (group B1), and 69 cases were at the adjacent levels (group B2). There was no significant difference in gender, age, fracture segment, degree of osteoporosis, disease duration, and preoperative visual analogue scale (VAS) score, and Oswestry disability index (ODI) between groups A and B and among groups A, B1, and B2 (P>0.05). The operation time, bone cement injection volume, postoperative VAS score, ODI, and bone cement distribution were compared among the groups. Results All operations were successfully completed without pulmonary embolism, needle tract infection, or nerve compression caused by bone cement leakage. There was no significant difference in operation time and bone cement injection volume between groups A and B or among groups A, B1, and B2 (P>0.05). All patients were followed up 3-32 months, with an average of 7.8 months. There was no significant difference in follow-up time between groups A and B and among groups A, B1, and B2 (P>0.05). At 3 days after operation and last follow-up, VAS score and ODI were significantly lower in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). Imaging review showed that the distribution of bone cement in the coronal midline of injured vertebrae was significantly better in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). In group A, 7 cases had postoperative vertebral collapse and 8 cases had other vertebral fractures. In group B, only 1 case had postoperative vertebral collapse during follow-up. ConclusionBilateral percutaneous vertebroplasty in the treatment of osteoporotic thoracolumbar compression fractures can obtain good bone cement distribution and effectiveness when the puncture needle tips locate at different levels during operation. When the puncture needle tips locate at the upper 1/3 layer and the lower 1/3 layer of the vertebral body, respectively, the puncture sites are closer to the upper and lower endplates, and the injected bone cement is easier to connect with the upper and lower endplates.
ObjectiveTo explore the effectiveness of using antibiotic bone cement-coated plates internal fixation technology as a primary treatment for Gustilo type ⅢB tibiofibular open fractures. Methods The clinical data of 24 patients with Gustilo type ⅢB tibiofibular open fractures who were admitted between January 2018 and December 2021 and met the selection criteria was retrospectively analyzed. Among them, there were 18 males and 6 females, aged from 25 to 65 years with an average age of 45.8 years. There were 3 cases of proximal tibial fracture, 6 cases of middle tibial fracture, 15 cases of distal tibial fracture, and 21 cases of fibular fracture. The time from injury to emergency surgery ranged from 3 to 12 hours, with an average of 5.3 hours. All patients had soft tissue defects ranging from 10 cm×5 cm to 32 cm×15 cm. The time from injury to skin flap transplantation for wound coverage ranged from 1 to 7 days, with an average of 4.1 days, and the size of skin flap ranged from 10 cm×5 cm to 33 cm×15 cm. Ten patients had bone defects with length of 2-12 cm (mean, 7.1 cm). After emergency debridement, the tibial fracture end was fixed with antibiotic bone cement-coated plates, and the bone defect area was filled with antibiotic bone cement. Within 7 days, the wound was covered with a free flap, and the bone cement was replaced while performing definitive internal fixation of the fracture. In 10 patients with bone defect, all the bone cement was removed and the bone defect area was grafted after 7-32 weeks (mean, 11.8 weeks). The flap survival, wound healing of the affected limb, complications, and bone healing were observed after operation, and the quality of life was evaluated according to the short-form 36 health survey scale (SF-36 scale) [including physical component summary (PCS) and mental component summary (MCS) scores] at 1 month, 6 months after operation, and at last follow-up. ResultsAll 24 patients were followed up 14-38 months (mean, 21.6 months). All the affected limbs were successfully salvaged and all the transplanted flaps survived. One case had scar hyperplasia in the flap donor site, and 1 case had hypoesthesia (grade S3) of the skin around the scar. There were 2 cases of infection in the recipient area of the leg, one of which was superficial infection after primary flap transplantation and healed after debridement, and the other was sinus formation after secondary bone grafting and was debrided again 3 months later and treated with Ilizarov osteotomy, and healed 8 months later. The bone healing time of the remaining 23 patients ranged from 4 to 9 months, with an average of 6.1 months. The scores of PCS were 44.4±6.5, 68.3±8.3, 80.4±6.9, and the scores of MCS were 59.2±8.2, 79.5±7.8, 90.0±6.6 at 1 month, 6 months after operation, and at last follow-up, respectively. The differences were significant between different time points (P<0.05). ConclusionAntibiotic bone cement-coated plates internal fixation can be used in the primary treatment of Gustilo type ⅢB tibiofibular open fractures, and has the advantages of reduce the risk of infection in fracture fixation, reducing complications, and accelerating the functional recovery of patients.
Objective To compare the effectiveness of different puncture methods of the flexible bone cement delivery device in unilateral percutaneous curved vertebroplasty for osteoporotic vertebral upper 1/3 compression fractures. Methods A retrospective analysis was conducted on the clinical data of 67 patients with osteoporotic vertebral upper 1/3 compression fractures who were admitted and met the selection criteria between January 2023 and April 2024. The patients were divided into two groups based on the puncture method of the flexible bone cement delivery device: the oblique puncture group (n=37) and the parallel puncture group (n=30). There was no significant difference (P>0.05) between the two groups in terms of gender, age, bone mineral density (T value), distribution of fractured vertebrae, time from injury to operation, and preoperative visual analogue scale (VAS) score for pain, Oswestry disability index (ODI), anterior vertebral height of the fractured vertebra, and Cobb angle of the fractured vertebra. The following parameters were compared between the two groups: operation time, incidence of secondary puncture, incidence of bone cement leakage, volume of injected bone cement, bone cement distribution score, as well as VAS score, ODI, anterior vertebral height of the fractured vertebra, and Cobb angle of the fractured vertebra at 1 day after operation and at last follow-up. Results Two cases in the oblique puncture group and 7 cases in the parallel puncture group underwent secondary puncture during operation, and the difference in the incidence of secondary puncture was significant (P<0.05). No complications such as bone cement hypersensitivity, bone cement embolism, nerve injury, or epidural hematoma occurred in both groups. There was no significant difference in operation time, volume of injected bone cement, incidence of bone cement leakage, distribution score and rating of bone cement between the two groups (P>0.05). All patients were followed up 6-18 months (mean, 12.0 months), and there was no significant difference in the follow-up time between the two groups (P>0.05). No further fracture collapse or compression occurred in the fractured vertebra during follow-up. Both groups exhibited significant improvements in VAS score, ODI, anterior vertebral height, and Cobb angle of the fractured vertebra after operation compared to baseline (P<0.05). There were also significant differences between the two time points after operation (P<0.05). However, there was no significant difference in the above indicators between the two groups (P>0.05). Conclusion For osteoporotic vertebral upper 1/3 compression fractures treated with unilateral percutaneous curved vertebroplasty, both oblique and parallel puncture methods of the flexible bone cement delivery device can effectively relieve pain, but the former is more conducive to reducing the incidence of secondary puncture.
ObjectiveTo investigate the effectiveness of Vesselplasty and percutaneous kyphoplasty (PKP) in treatment of Kümmell disease.MethodsBetween January 2015 and December 2018, 63 patients with Kümmell disease were treated. Among them, 28 cases were treated with Vesselplasty (Vesselplasty group) and 35 cases were treated with PKP (PKP group). There was no significant difference in gender, age, disease duration, bone mineral density (T value), fracture distribution, and preoperative pain visual analogue scale (VAS) score, Oswestry Disability Index (ODI), anterior height of injured vertebrae, and kyphosis Cobb angle between the two groups (P>0.05). The operation time, intraoperative fluoroscopy time, bone cement injection volume, the leakage rate of bone cement, the diffusion area ratio of bone cement, and the complications of the two groups were recorded. VAS score, ODI, anterior height of injured vertebrae, and kyphosis Cobb angle were compared between the two groups before operation and at 1 day after operation and last follow-up.ResultsAll patients of the two groups were followed up 12-36 months, with an average of 24.2 months. The operation time, intraoperative fluoroscopy time, bone cement injection volume, and diffusion area ratio of bone cement were significantly lower in the Vesselplasty group than in the PKP group (P<0.05). The leakage rate of bone cement was significantly lower in the Vesselplasty group (7.14%) than in the PKP group (34.29%) (χ2=5.153, P=0.023). At 1 day after operation and last follow-up, the VAS score, ODI, anterior height of injured vertebrae, and kyphosis Cobb angle of the two groups were superior to those before operation (P<0.05), and no significant difference between the two groups (P>0.05). During the follow-up, there was no re-collapse of vertebrae, and the adjacent vertebrae fracture occurred in 2 cases of the Vesselplasty group and 5 cases of PKP group. There was no significant difference in the incidence of adjacent vertebrae fracture between the Vesselplasty group (7.14%) and the PKP group (14.29%) (χ2=0.243, P=0.622).ConclusionVesselplasty and PKP have similar effectiveness in the treatment of Kümmell disease. They can effectively relieve the pain symptoms, improve the quality of life, partially restore the height of injured vertebrae, and correct kyphosis. But the Vesselplasty has the advantages of shorter operation time, less intraoperative fluoroscopy time, and less bone cement leakage.
ObjectiveTo analyze the correlation between bone cement cortical leakage and injury degree of osteoporotic vertebral compression fracture (OVCF) after percutaneous kyphoplasty (PKP), and to provide guidance for reducing clinical complications. Methods A clinical data of 125 patients with OVCF who received PKP between November 2019 and December 2021 and met the selection criteria was selected and analyzed. There were 20 males and 105 females. The median age was 72 years (range, 55-96 years). There were 108 single-segment fractures, 16 two-segment fractures, and 1 three-segment fracture. The disease duration ranged from 1 to 20 days (mean, 7.2 days). The amount of bone cement injected during operation was 2.5-8.0 mL, with an average of 6.04 mL. Based on the preoperative CT images, the standard S/H ratio of the injured vertebra was measured (S: the standard maximum rectangular area of the cross-section of the injured vertebral body, H: the standard minimum height of the sagittal position of the injured vertebral body). Based on postoperative X-ray films and CT images, the occurrence of bone cement leakage after operation and the cortical rupture at the cortical leakage site before operation were recorded. The correlation between the standard S/H ratio of the injured vertebra and the number of cortical leakage was analyzed. Results Vascular leakage occurred in 67 patients at 123 sites of injured vertebrae, and cortical leakage in 97 patients at 299 sites. Preoperative CT image analysis showed that there were 287 sites (95.99%, 287/299) of cortical leakage had cortical rupture before operation. Thirteen patients were excluded because of vertebral compression of adjacent vertebrae. The standard S/H ratio of 112 injured vertebrae was 1.12-3.17 (mean, 1.67), of which 87 cases (268 sites) had cortical leakage. The Spearman correlation analysis showed a positive correlation between the number of cortical leakage of injured vertebra and the standard S/H ratio of injured vertebra (r=0.493, P<0.001). ConclusionThe incidence of cortical leakage of bone cement after PKP in OVCF patients is high, and cortical rupture is the basis of cortical leakage. The more severe the vertebral injury, the greater the probability of cortical leakage.
Objective To investigate the feasibility and effectiveness of antibiotic bone cement directly inducing skin regeneration technology in the repairing of wound in the lateral toe flap donor area. MethodsBetween June 2020 and February 2023, antibiotic bone cement directly inducing skin regeneration technology was used to repair lateral toe flap donor area in 10 patients with a total of 11 wounds, including 7 males and 3 females. The patients’ age ranged from 21 to 63 years, with an average of 40.6 years. There were 3 cases of the distal segment of the thumb, 2 cases of the distal segment of the index finger, 1 case of the middle segment of the index and middle fingers, 1 case of the distal segment of the middle finger, and 3 cases of the distal segment of the ring finger. The size of the skin defect of the hand ranged from 2.4 cm×1.8 cm to 4.3 cm×3.4 cm. The disease duration ranged from 1 to 15 days, with an average of 6.9 days. The flap donor sites were located at fibular side of the great toe in 5 sites, tibial side of the second toe in 5 sites, and tibial side of the third toe in 1 site. The skin flap donor site wounds could not be directly sutured, with 2 cases having exposed tendons, all of which were covered with antibiotic bone cement. ResultsAll patients were followed up 6 months to 2 years, with an average of 14.7 months. All the 11 flaps survived and had good appearance. The wound healing time was 40-72 days, with an average of 51.7 days. There was no hypertrophic scar in the donor site, which was similar to the color of the surrounding normal skin; the appearance of the foot was good, and wearing shoes and walking of the donor foot were not affected. ConclusionIt is a feasible method to repair the wound in the lateral foot flap donor area with the antibiotic bone cement directly inducing skin regeneration technology. The wound heals spontaneously, the operation is simple, and there is no second donor site injury.
Objective To evaluate the effectiveness of Confidence high viscosity bone cement system and postural reduction in treating acute severe osteoporotic vertebral compression fracture (OVCF). Methods Between June 2004 and June2009, 34 patients with acute severe OVCF were treated with Confidence high viscosity bone cement system and postural reduction. There were 14 males and 20 females with an average age of 72.6 years (range, 62-88 years). All patients had single thoracolumbar fracture, including 4 cases of T11, 10 of T12, 15 of L1, 4 of L2, and 1 of L3. The bone density measurement showed that T value was less than —2.5. The time from injury to admission was 2-72 hours. All cases were treated with postural reduction preoperatively. The time of reduction in over-extending position was 7-14 days. All patients were injected unilaterally. The injected volume of high viscosity bone cement was 2-6 mL (mean, 3.2 mL). Results Cement leakage was found in 3 cases (8.8%) during operation, including leakage into intervertebral space in 2 cases and into adjacent paravertebral soft tissue in 1 case. No cl inical symptom was observed and no treatment was pearformed. No pulmonary embolism, infection, nerve injury, or other complications occurred in all patients. All patients were followed up 12-38 months (mean, 18.5 months). Postoperatively, complete pain rel ief was achievedin 31 cases and partial pain refief in 3 cases; no re-fracture or loosening at the interface occurred. At 3 days after operation and last follow-up, the anterior and middle vertebral column height, Cobb angle, and visual analogue scale (VAS) score were improved significantly when compared with those before operation (P lt; 0.05);and there was no significant difference between 3 days and last follow-up (P gt; 0.05). Conclusion Confidence high viscosity bone cement system and postural reduction can be employed safely in treating acute severe OVCF, which has many merits of high viscosity, long time for injection, and easy-to-control directionally.
ObjectiveTo compare the effect of percutaneous kyphoplasty (PKP) with different phases bone cement for treatment of osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 219 OVCF patients who treated with PKP and met the selection criteria between June 2016 and May 2018 were retrospectively analyzed. According to the different time of intraoperative injection of bone cement, they were divided into observation group [116 cases, intraoperative injection of polymethyl methacrylate (PMMA) bone cement in low-viscosity wet-sand phase)] and control group (103 cases, intraoperative injection of PMMA bone cement in low-viscosity wire-drawing phase). There was no significance in general date of gender, age, disease duration, body mass index, bone mineral density T value, fracture vertebral body, preoperative fracture severity of the responsible vertebral body, anterior height ratio of the responsible vertebral body, preoperative pain visual analogue scale (VAS) score, and Oswestry disability index (ODI) between the two groups (P>0.05). The VAS score and ODI score were used to evaluate the improvement of patients’ symptoms at immediate, 2 days, 3 months after operation and at last follow-up. At 1 day, 3 months after operation, and at last follow-up, X-ray film and CT of spine were reexamined to observe the distribution of bone cement in the vertebral body, bone cement leakage, and other complications. During the follow-up, the refracture rate of the responsible vertebral body and the fracture rate of the adjacent vertebral body were recorded.ResultsThe injection amount of bone cement in the observation group and control group were (4.53±0.45) mL and (4.49±0.57) mL, respectively, showing no significant difference between the two groups (t=1.018, P=0.310). Patients in both groups were followed up 6-18 months (mean, 13.3 months). There were 95 cases (81.9%) and 72 cases (69.9%) of the bone cement distribution range more than 49% of the cross-sectional area of the vertebral body in the observation group and the control group, respectively, showing significant difference in the incidence between the two groups (χ2=4.334, P=0.037). The VAS score and ODI score of the postoperative time points were significantly improved compared with those before operation (P<0.05), and there were significant differences among the postoperative time points (P<0.05). The VAS score and ODI score of the observation group were significantly better than those of the control group (P<0.05) at immediate, 2 days, and 3 months after operation, and there was no significant difference between the two groups at last follow-up (P>0.05). At 1 day after operation, the cement leakage occurred in 18 cases of the observation group (8 cases of venous leakage, 6 cases of paravertebral leakage, 4 cases of intradiscal leakage) and in 22 cases of the control group (9 cases of venous leakage, 8 cases of paravertebral leakage, 5 cases of intradiscal leakage). There was no significant difference between the two groups (P>0.05). During the follow-up, 5 cases (4.3%) in the observation group, 12 cases (11.7%) in the control group had responsible vertebral refracture, and 6 cases (5.2%) in the observation group and 14 cases (13.6%) in the control group had adjacent vertebral fracture, the differences were significant (χ2=4.105, P=0.043; χ2=4.661, P=0.031).ConclusionBone cement injection with wet-sand phase in PKP is beneficial for the bone cement evenly distributed, strengthening the responsible vertebral, relieving the short-term pain after operation, decreasing the rate of responsible vertebral refracture and adjacent vertebral fracture without increasing the incidence of relevant complications and can enhance the effectiveness.
ObjectiveTo investigate the effectiveness of modified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering in the treatment of diabetic foot (DF). MethodsThe clinical data of 22 DF patients treated with modified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering between October 2019 and December 2021 were retrospectively analyzed. There were 13 males and 9 females with an average age of 61.3 years (range, 41-74 years). The duration of diabetes mellitus was 8-30 years, with an average of 12.5 years, and the duration of DF was 10-42 days, with an average of 28.2 days. There were 2 cases of grade 3 and 20 cases of grade 4 according to Wagner classification. CT angiography was performed on both lower extremities of the patients, and the blood vessels of the affected extremities were narrowed to varying degrees and the blood supply was poor. The preoperative skin temperature of affected foot was (28.27±0.91)°C, the ankle brachial index (ABI) was 0.42±0.11, and the visual analogue scale (VAS) score was 7.7±0.6. Preoperative size of DF ulcer ranged from 2.5 cm×2.0 cm to 3.5 cm×3.0 cm. The skin temperature of affected foot, ABI, VAS score, and skin wound healing of the affected foot were recorded and compared between before operation and at 3 months after operation. ResultsAll patients were followed up 3-18 months, with an average of 10.5 months. The infection of 1 patient with Wagner grade 4 did not improve significantly after operation, and there was a trend of further deterioration, and the amputation of the left leg was finally performed at 22 days after operation.The remaining 21 patients recovered well after operation, the external fixator was removed at 1 month after operation, the wound healed at 3 months after operation, and there was no recurrence of ulcer in situ or other sites during follow-up. At 3 months after operation, the skin temperature of affected foot was (31.76±0.34)°C, the ABI was 0.94±0.08, and the VAS score was 2.1±0.3, which significantly improved when compared with those before operation (t=25.060, P<0.001; t=32.412, P<0.001; t=–51.746, P<0.001). ConclusionModified tibial transverse bone transport technique combined with vancomycin calcium phosphate bone cement local filling and covering for DF patients can effectively improve the blood supply of the affected limb, promote wound healing, and improve effectiveness.
Objective To explore the effectiveness of mini external fixators combined with bone cement spacers in the treatment of gouty hallux rigidus with bone defects. Methods A retrospective analysis was conducted on the clinical data of 21 male patients diagnosed with gouty hallux rigidus and bone defects, treated with mini external fixators combined with bone cement spacers between January 2017 and December 2024. The age ranged from 35 to 72 years, with an average age of 61.1 years. The disease duration was 12-35 years, with an average of 18.2 years. The American College of Rheumatology (ACR) gout score ranged from 16 to 23, with an average of 18.6. All 21 cases of hallux rigidus were classified as grade 3 according to the Coughlin classification. Clinical efficacy was evaluated preoperatively and at 6 months postoperatively using the visual analogue scale (VAS) score for pain, the dorsiflexion angle of first metatarsophalangeal joint in a weight-bearing state, and the American Orthopaedic Foot & Ankle Society (AOFAS) score. Radiological evaluation was performed by measuring the hallux valgus angle (HVA) using weight-bearing X-ray films and the tophi volume using dual-energy CT. Results The operation time ranged from 30 to 56 minutes, with an average of 42.05 minutes. The intraoperative blood loss varied between 10 and 30 mL, averaging 20 mL. All 21 patients were followed up 6-15 months, averaging 9.3 months. One patient experienced delayed wound healing due to the liquefaction of residual tophus; no other patients exhibited complications such as wound or pin tract infections, skin necrosis, fractures, or metastatic metatarsalgia. Six patients experienced acute gout attacks 4-7 days postoperatively, which were effectively alleviated through symptomatic treatment. At 6 months after operation, patients showed significant improvements in HVA, tophus volume, VAS scores, AOFAS scores, and the dorsiflexion angle of first metatarsophalangeal joint compared to preoperative values, with significant differences (P<0.05). ConclusionMini external fixator combined with a cement spacer is an effective treatment for gouty hallux rigidus with bone defects.