west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone marrow mesenchymal stem cells" 38 results
  • TREATMENT OF EARLY AVASCULAR NECROSIS OF FEMORAL HEAD BY CORE DECOMPRESSION COMBINED WITH AUTOLOGOUS BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION

    Objective To compare the cl inical outcomes of the core decompression combined with autologous bone marrow mesenchymal stem cells (BMSCs) transplantation with the isolated core decompression for the treatment of earlyavascular necrosis of the femoral head (ANFH). Methods From May 2006 to October 2008, 8 patients (16 hips) with earlyANFH were treated. There were 7 males and 1 female with an average age of 35.7 years (range, 19-43 years). According to the system of the Association Research Circulation Osseous (ARCO): 4 hips were classified as stage II a, 2 as stage II b, 1 as stage II c, and 1 as stage III a in group A; 2 hips were classified as stage II a, 2 as stage II b, 3 as stage II c, and 1 as stage III a in group B. The average disease course was 1.1 years (range, 4 months to 2 years). The patients were randomly divided into 2 groups according to left or right side: group A, only the core decompression was used; group B, both the core decompression and autologous BMSCs transplantation were used. The Harris score and visual analogue scale (VAS) score were determined, imaging evaluation was carried out by X-rays and MRI pre- and post-operatively. The erythrocyte sedimentation rate, C-reactive protein, l iver function, renal function, and immunoglobul in were detected for safety evaluation. Results All incisions healed by first intention. Eight patients were followed up 12-42 months (23.5 months on average). The cl inical symptoms of pain and claudication were gradually improved. The Harris scores and VAS scores of all patients were increased significantly at 3, 6, and 12 months after operation (P lt; 0.05). There was no significant difference between groups A and B 3 and 6 months after operation (P gt; 0.05), but there was significant difference between groups A and B 12 months after operation (P lt; 0.05). The necrosis area of femoral head in groups A and B were 18.13% ± 2.59% and 13.25% ± 2.12%, respectively, showing significant difference (P lt; 0.05). In group A, femoral head collapsed 12 months after operation in 1 case of stage III. No compl ication of fever, local infectionoccurred. Conclusion The core decompression and the core decompression combined with BMSCs transplantation are both effective for the treatment of early ANFH. The core decompression combined with BMSCs transplantation is better than core decompression in the rel ief of pain and postponing head collapse.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Comprehensive Evaluation of Biological Activity in Different Passage Populations of Mesenchymal Stem Cells Derived from Bone Marrow in Ovariectomy Osteoporotic Rats

    This study aimed to comprehensively evaluate the biological activity in different passage populations of mesenchymal stem cells (BMSCs) derived from bone marrow in ovariectomy osteoporotic rats (named OVX-rBMSCs), providing experimental basis for new osteoporotic drug development and research. OVX-rBMSCs were isolated and cultured in vitro by the whole bone marrow adherent screening method. The morphological observation, cell surface markers (CD29, CD45, CD90) detection, cell proliferation, induced differentiation experimental detection were performed to evaluate the biological activity of Passage 1, 2, 3, 4 populations (P1, P2, P3, P4) OVX-rBMSCs. The results showed that whole bone marrow adherent culture method isolated and differentially subcultured OVX-The morphology of P4 OVX-rBMSCs was identical fibroblast-like and had the characteristics of ultrastructure of stem cells. The CD29 positive cells rate, CD90 positive cells rate, cell proliferation index, and the osteogenic, adipogenic, chondrogenic differentiation capacities of P4 OVX-rBMSCs were significantly better than those of other populations (P < 0.05). OVX-rBMSCs purity and biological activity were gradually optimized with the passaged, and among them P4 cells were superior to all the other populations. Based on these results, we report that the P4 OVX-rBMSCs model developed in this study can be used to develop a new and effective medical method for osteoporotic drug screening.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 7/poly (lactide-co-glycolide) microspheres on the in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells

    ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Effect of xanthohumol-loaded anti-inflammatory scaffolds on cartilage regeneration in goats

    ObjectiveTo develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats. Methods The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds. Results The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity (P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold (P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds (P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds (P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds (P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds (P<0.05). ConclusionThe drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.

    Release date:2022-11-02 10:05 Export PDF Favorites Scan
  • Effect of granulocyte colony-stimulating factor mobilizing bone marrow mesenchymal stell cells homing to injury sites in spinal cord injury of rats

    ObjectiveTo investigate the effect of granulocyte colony-stimulating factor (G-CSF) mobilizing the bone marrow mesenchymal stem cells (BMSCs) homing to the spinal cord injury sites in rats, and to evaluate the feasibility of G-CSF mobilizing the BMSCs home to the injured spinal cord. MethodsTwenty-four healthy adult female Sprague Dawley rats were injected with 1 mL green fluorescence protein labeled BMSCs (GFP-BMSCs, 1×106 cells/mL) into tail vein at 12 hours before operation. They were randomly divided into sham operation group (group A), sham operation+G-CSF group (group B), spinal cord injury group (group C), and spinal cord injury+G-CSF group (group D), with 6 rats in each group. In groups C and D, spinal cord injury model was established by T10 level spinal cord hemisection. In groups A and B, only laminectomy was performed without injury to the spinal cord. Groups B and D were injected with G-CSF (10 μg/kg·d) at 1 hour after operation for 3 consecutive days, and groups A and C were injected with the same amount of saline. The Basso-Beattie-Bresnahan (BBB) score was used to estimate the neurological function of rats and the expressions of tumor necrosis factor α (TNF-α) and stromal-derived factor 1 (SDF-1) were detected by ELISA method at 1, 3, 7, 14, 21, and 28 days after operation. The spinal cord samples of rats were sacrificed at 28 days after operation for immunohistochemical staining to observe the expression of cytokines, including SDF-1, brain derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and TNF-α, and immunofluorescence staining to observe GFP-BMSCs positive cells, double-stained fluorescent yellow GFP/neuronal nuclear antigen (NeuN) positive neurons, and GFP/glial fibrillary acidic protein (GFAP) positive neurons. The number of glial cells and apoptosis were detected by TUNEL method. ResultsThe BBB score of groups A and B had no significant change at each time point after operation. At 1 day after operation, the BBB score of groups C and D decreased to the lowest level, and then gradually increased. The BBB score of group D was significantly higher than that of group C at all time points except 1 day after operation (P<0.05). At 3, 7, 14, 21, 28 days after operation, the levels of TNF-α and SDF-1 in groups C and D were significantly higher than those in groups A and B (P<0.05), but the levels of TNF-α in group D were significantly lower than those in group C at each time point, and the levels of SDF-1 were significantly higher than those in group C (P<0.05). Immunohistochemical staining showed that the expressions of SDF-1, BDNF, VEGF, and TNF-α in groups C and D were significantly higher than those in groups A and B (P<0.05); the expressions of SDF-1, BDNF, and VEGF in group D were significantly higher than those in group C, and the expression of TNF-α was significantly lower than that in group C (P<0.05). Immunofluorescence staining showed that the number of GFP-BMSCs, GFP/NeuN, and GFP/GFAP positive cells in groups C and D were significantly higher than those in groups A and B, and in group D than in group C (P<0.05). TUNEL assay showed that the number of apoptotic cells in groups C and D was significantly lower than that in groups A and B, and in group D than in group C (P<0.05). ConclusionG-CSF can mobilize BMSCs to the spinal cord injury site and promote repair effect by down-regulating TNF-α to promote the anti-apoptosis function and up-regulating SDF-1, BDNF, VEGF to promote BMSCs migration.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • HYPOXIA INDUCIBLE FACTOR 1α/2α GENES EXPRESSION IN CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo observe the genes expression of hypoxia inducible factor 1α (HIF-1α) and HIF-2α by inducing chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) so as to provide a fundamental basis for HIF involving in the mechanism of chondrogenesis. MethodsHigh density pellet of hBMSCs was obtained by centrifugation and cultured with H-DMEM medium containing 2% fetal bovine serum (control group) and with chondrogenic medium (chondrogenic induction group) under hypoxia (2%O2) for 3 weeks. Immunohistochemistry staining was utilized to identify extracellular proteoglycan and collagen type Ⅱ at 3 weeks after culture. Western blot was applied for measuring HIF-1α and HIF-2α protein levels at 1 week after culture. Real-time quantitative PCR was performed to detect the genes expressions of HIF-1α, HIF-2α, Sox-9, collagen type Ⅱ, collagen type X, and Aggrecan at 1, 2, and 3 weeks after culture. ResultsToluidine blue staining showed sparse nucleus in the control group, and dense nucleus in the chondrogenic induction group;extracellular matrix staining was deeper in the chondrogenic induction group than the control group. Immunohistochemical staining for collagen type Ⅱ was positive in cytoplasm;when compared with the chondrogenic induction group, the control group showed sparse and light-coloured nucleus. At 1 week after culture, the protein expression levels of HIF-1α and HIF-2α in the chondrogenic induction group were significantly lower than those in the control group (t=8.345, P=0.001;t=7.683, P=0.002). When compared with control group, the HIF-1α mRNA expression was significantly down-regulated at 1 week and significantly up-regulated at 2 weeks in chondrogenic induction group (P<0.05), but no significant difference was found at 3 weeks between the 2 groups (P>0.05). And the mRNA expression of HIF-2α was significantly down-regulated and mRNA expression of Sox-9 was significantly up-regulated after chondrogenic differentiation when compared with the control group (P<0.01). The mRNA expressions of collagen type Ⅱ and collagen type X were significantly up-regulated at 2 and 3 weeks after chondrogenic differentiation when compared with the control group (P<0.05). And the mRNA expression of Aggrecan was significantly up-regulated at each time point after chondrogenic differentiation (P<0.05). ConclusionHIF-1α may involve the hBMSCs chondrogenic differentiation under hypoxia, while HIF-2α expression is depressed throughout the period and may have negative effect on differentiation.

    Release date: Export PDF Favorites Scan
  • Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells

    ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • Effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells in repair of neurological deficit after traumatic brain injury in rats

    ObjectiveTo investigate the possibility and effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in repair of neurological deficit after traumatic brain injury (TBI) in rats.MethodsBMSCs were isolated, cultured, and passaged by the method of bone marrow adherent culture. The 3rd generation BMSCs were identified by the CD29 and CD45 surface antigens and marked by 5-bromo-2-deoxyuridine (BrdU). The chitosan porous scaffolds were produced by the method of freeze-drying. The BrdU-labelled BMSCs were co-cultured in vitro with chitosan porous scaffolds, and were observed by scanning electron microscopy. MTT assay was used to observe the cell growth within the scaffold. Fifty adult Sprague Dawley rats were randomly divided into 5 groups with 10 rats in each group. The rat TBI model was made in groups A, B, C, and D according to the principle of Feeney’s free fall combat injury. Orthotopic transplantation was carried out at 72 hours after TBI. Group A was the BMSCs and chitosan porous scaffolds transplantation group; group B was the BMSCs transplantation group; group C was the chitosan porous scaffolds transplantation group; group D was the complete medium transplantation group; and group E was only treated with scalp incision and skull window as sham-operation group. Before TBI and at 1, 7, 14, and 35 days after TBI, the modified neurological severity scores (mNSS) was used to measure the rats’ neurological function. The Morris water maze tests were used after TBI, including the positioning voyage test (the incubation period was detected at 31-35 days after TBI, once a day) and the space exploration test (the number of crossing detection platform was detected at 35 days after TBI). At 36 days after TBI, HE staining and immunohistochemistry double staining [BrdU and neurofilament triplet H (NF-H) immunohistochemistry double staining, and BrdU and glial fibrillary acidic protein (GFAP) immunohistochemistry double staining] were carried out to observe the transplanted BMSCs’ migration and differentiation in the damaged brain areas.ResultsFlow cytometry test showed that the positive rate of CD29 of the 3rd generation BMSCs was 98.49%, and the positive rate of CD45 was only 0.85%. After co-cultured with chitosan porous scaffolds in vitrofor 48 hours, BMSCs were spindle-shaped and secreted extracellular matrix to adhere in the scaffolds. MTT assay testing showed that chitosan porous scaffolds had no adverse effects on the BMSCs’ proliferation. At 35 days after TBI, the mNSS scores and the incubation period of positioning voyage test in group A were lower than those in groups B, C, and D, and the number of crossing detection platform of space exploration test in group A was higher than those in groups B, C, and D, all showing significant differences (P<0.05); but no significant difference was found between groups A and E in above indexes (P>0.05). HE staining showed that the chitosan porous scaffolds had partially degraded, and they integrated with brain tissue well in group A; the degree of repair in groups B, C, and D were worse than that of group A. Immunohistochemical double staining showed that the transplanted BMSCs could survive and differentiate into neurons and glial cells, some differentiated neural cells had relocated at the normal brain tissue; the degree of repair in groups B, C, and D were worse than that of group A.ConclusionThe transplantation of chitosan porous scaffolds combined with BMSCs can improve the neurological deficit of rats following TBI obviously, and also inhabit the glial scar’s formation in the brain damage zone, and can make BMSCs survive, proliferate, and differentiate into nerve cells in the brain damage zone.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • REGULATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS OSTEOGENIC AND ADIPOGENIC DIFFERENTIATIONS BY Wnt10b ADENOVIRAL VECTOR IN VITRO

    ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • DYNAMIC CHANGES OF GENE EXPRESSION PROFILES DURING CARDIOMYOGENESIS OF HUMANMARROW MESENCHYMAL STEM CELLS/

    Objective To analyze the changes of gene expression profiles during the process that human bonemarrow mesenchymal stem cells (hBMSCs) are induced to differentiate into cardiomyogenic cells with 5-azacytidine (5-aza). Methods hBMSCs were isolated from marrow of obsolete ribs and induced with 5-aza. Then immunocytochemicalstaining was used to detect the expressions of α-actin, cardiac troponin T (cTnT), and connexin 43, and the percentage ofcTnT positive cells was tested with flow cytometry. In the process of differentiation, variation of gene expression was screenedwith Genechi ps Operating System of human gene expression profiles. And the differentially expressed genes were functionallyanalyzed and hierarchical clustered. Results When BMSCs were induced in vitro with 5-aza, part of the cells turnedinto myogenic cells morphologically. Before induction, immunocytochemical staining for α-actin and cTnT showed sl ightpositive and for connexin 43 showed negative. While after 3 weeks of induction, immunocytochemical staining for α-actin,cTnT, and connexin 43 showed all positive. With flow cytometry, the percentage of cTnT positive cells was 7.43% ± 0.02%before induction, but it was 49.64% ± 0.05% after induction. During differentiation, 1 814 differentially expressed geneswere reported by gene chi ps. Of them, 647 genes were divided into 5 groups with hierarchical clustering. They had variousbiological functions, involving signal transduction, cell metabol ism, prol iferation, differentiation, development, andtopogenesis. Conclusion hBMSCs can differentiate into cardiomyogenic cells with the induction of 5-aza in vitro. Multi plegenes related with signal transduction, transcri ption, and growth factors are involved during this process.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content