west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone repair" 23 results
  • Novel nano-hydroxyapatite/polyurethane composite scaffold in the treatment of chronic osteomyelitis

    ObjectiveTo evaluate the bone repair efficacy of the new nano-hydroxyapatite (n-HA)/polyurethane (PU) composite scaffold in the treatment of chronic osteomyelitis in tibia.MethodsA novel levofloxacin@mesoporous silica microspheres (Lev@MSNs)/n-HA/PU was successfully synthesized. Its surface structure was observed by scanning electron microscopy (SEM). Fifty adult female New Zealand rabbits were randomly selected, and osteomyelitis was induced in the right tibia of the rabbit by injecting bacterial suspension (Staphylococcus aureus; 3×107 CFU/mL), which of the method was described by Norden. A total of 45 animals with the evidence of osteomyelitis were randomly divided into 4 groups, and the right medullary cavity of each animal was exposed. Animals in the blank control group (group A, n=9) were treated with exhaustive debridement only. The remaining animals were first treated by exhaustive debridement, and received implantations of 5 mg Lev@PMMA (group B, n=12), 1 mg Lev@MSNs/n-HA/PU (group C, n=12), and 5 mg Lev@MSNs/n-HA/PU (group D, n=12), respectively. At 12 weeks postoperatively, the right tibia of rabbits were observed by X-ray film, and then gross observation, methylene blue/acid fuchsin staining, and SEM observation of implant-bone interface, as well as biomechanical test (measuring the maximal compression force) were performed.ResultsX-ray films showed that the infection were severer than those of preoperation in group A, while the control of inflammation and bone healing of rabbits in group D were obviously better than those at preoperation. The gross observation showed extensive bone destruction in group A, a significant gap between bone tissue and the material in groups B and C, and close combination between bone tissue and the material in group D. The histology of the resected specimens showed that there was no obvious new bone formation around the materials in groups B and C, and there was abundant new bone formation around the periphery and along the voids of the materials and active bone remodeling in group D. The SEM observation of the bone-implant interface demonstrated that no new bone formation was observed at the bone-implant interface in groups B and C. However, bony connections and blurred boundaries were observed between the material and host bone tissue in group D. The biomechanical test showed the maximal compression force of groups B and D were significantly higher than that of groups A and C (P<0.05), but there was no significant difference between groups B and D (P>0.05).ConclusionThe novel synthetic composite Lev@MSNs/n-HA/PU exhibit good antibacterial activities, osteoconductivity, and biomechanical properties, and show great potential in the treatment of chronic osteomyelitis of rabbits.

    Release date:2018-07-12 06:19 Export PDF Favorites Scan
  • DEVELOPMENT OF INJECTABLE BONE REPAIR BIOMATERIALS

    Objective To introduce the basic research and cl inical appl ication of the injectable bone repair biomaterials. Methods The recent original articles about the injectable bone repair biomaterials were extensively reviewed. Results The injectable bone repair biomaterials could fill irregularly shaped defects and might allow bone augmentation, both with minimal surgical intervention, and the injectable bone repair material had a good prospect by the medical profession and attach great importance to the academic material, but there were some deficiencies and shortcomings. Conclusion The injectable bone repair biomaterials may be a future approach to repair bone defect.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • Research progress on 3D printing ceramic-polymer composite for bone repair

    Traditional bone repair materials, such as titanium, polyetheretherketone, and calcium phosphate, exhibit limitations, including poor biocompatibility and incongruent mechanical properties. In contrast, ceramic-polymer composite materials combine the robust mechanical strength of ceramics with the flexibility of polymers, resulting in enhanced biocompatibility and mechanical performance. In recent years, researchers worldwide have conducted extensive studies to develop innovative composite materials and manufacturing processes, with the aim of enhancing the bone repair capabilities of implants. This article provides a comprehensive overview of the advancements in ceramic-polymer composite materials, as well as in 3D printing and surface modification techniques for composite materials, with the objective of offering valuable insights to improve and facilitate the clinical application of ceramic-polymer composite materials in the future.

    Release date:2023-10-24 03:04 Export PDF Favorites Scan
  • Applications and prospects of graphene and its derivatives in bone repair

    ObjectiveTo summarize the latest research progress of graphene and its derivatives (GDs) in bone repair. MethodsThe relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed. ResultsThe application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.ConclusionGDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.

    Release date: Export PDF Favorites Scan
  • Osteoimmunomodulatory effects of inorganic biomaterials in the process of bone repair

    Objective To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. Methods A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. Results Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. Conclusion Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries

    Objective To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. Methods Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. Results As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. Conclusion Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • Preparation and in vivo osteogenesis of acellular dermal matrix/dicalcium phosphate composite scaffold for bone repair

    Objective To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1, 3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content (P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups (P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group (P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.

    Release date:2024-06-14 09:52 Export PDF Favorites Scan
  • Experimental study on repairing rabbit skull defect with bone morphogenetic protein 2 peptide/functionalized carbon nanotube composite

    ObjectiveTo observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH2) groups with materials.MethodsTwenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly (L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue.ResultsCT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant (P<0.05).ConclusionThrough covalent binding and using -NH2 to bound peptides with materials, the best bone repair effect can be achieved.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
  • Stem cells sheets for bone and cartilage repair

    Cell sheet technology refers to the preparation of cells into thin sheets, which retains a large amount of extracellular matrix, cell-cell junctions, and has a wide range of applications in the repair and regeneration of osteochondral tissues. This paper discusses the types, properties, and construction methods of stem cell sheets, and reviews the current research status of vascularization of stem cell sheets and their composite application with various cytokines and scaffolding materials for bone and cartilage repair, with the aim of exploring the direction of the further development of stem cell sheets in the field of bone and cartilage.

    Release date:2023-10-24 03:04 Export PDF Favorites Scan
  • Hydrogel-based vascularization strategy in the field of bone tissue engineering

    Bone tissue regeneration and blood vessel formation are inseparable. How to realize the vascularization of bone repair scaffolds is an urgent problem in bone tissue engineering. The growth and development, mineralization maturity, reconstruction and remodeling, and tissue regeneration of bone are all based on forming an excellent vascularization network. In recent years, more and more researchers have used hydrogels to carry different cells, cytokines, metal ions and small molecules for in vitro vascularization and application in bone regeneration. Based on this background, this article reviews the hydrogel-based vascularization strategies in bone tissue engineering.

    Release date:2023-04-24 08:49 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content