The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.
Brain-computer interface (BCI) provides a direct communicating and controlling approach between the brain and surrounding environment, which attracts a wide range of interest in the fields of brain science and artificial intelligence. It is a core to decode the electroencephalogram (EEG) feature in the BCI system. The decoding efficiency highly depends on the feature extraction and feature classification algorithms. In this paper, we first introduce the commonly-used EEG features in the BCI system. Then we introduce the basic classical algorithms and their advanced versions used in the BCI system. Finally, we present some new BCI algorithms proposed in recent years. We hope this paper can spark fresh thinking for the research and development of high-performance BCI system.
Brain-computer interface (BCI) has great potential to replace lost upper limb function. Thus, there has been great interest in the development of BCI-controlled robotic arm. However, few studies have attempted to use noninvasive electroencephalography (EEG)-based BCI to achieve high-level control of a robotic arm. In this paper, a high-level control architecture combining augmented reality (AR) BCI and computer vision was designed to control a robotic arm for performing a pick and place task. A steady-state visual evoked potential (SSVEP)-based BCI paradigm was adopted to realize the BCI system. Microsoft's HoloLens was used to build an AR environment and served as the visual stimulator for eliciting SSVEPs. The proposed AR-BCI was used to select the objects that need to be operated by the robotic arm. The computer vision was responsible for providing the location, color and shape information of the objects. According to the outputs of the AR-BCI and computer vision, the robotic arm could autonomously pick the object and place it to specific location. Online results of 11 healthy subjects showed that the average classification accuracy of the proposed system was 91.41%. These results verified the feasibility of combing AR, BCI and computer vision to control a robotic arm, and are expected to provide new ideas for innovative robotic arm control approaches.
Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.
Brain-computer interface (BCI) is a revolutionizing human-computer Interaction, which is developing towards the direction of intelligent brain-computer interaction and brain-computer intelligent integration. However, the practical application of BCI is facing great challenges. The maturity of BCI technology has not yet reached the needs of users. The traditional design method of BCI needs to be improved. It is necessary to pay attention to BCI human factors engineering, which plays an important role in narrowing the gap between research and practical application, but it has not attracted enough attention and has not been specifically discussed in depth. Aiming at BCI human factors engineering, this article expounds the design requirements (from users), design ideas, objectives and methods, as well as evaluation indexes of BCI with the human-centred-design. BCI human factors engineering is expected to make BCI system design under different use conditions more in line with human characteristics, abilities and needs, improve the user satisfaction of BCI system, enhance the user experience of BCI system, improve the intelligence of BCI, and make BCI move towards practical application.
The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.
Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.
Error self-detection based on error-related potentials (ErrP) is promising to improve the practicability of brain-computer interface systems. But the single trial recognition of ErrP is still a challenge that hinters the development of this technology. To assess the performance of different algorithms on decoding ErrP, this paper test four kinds of linear discriminant analysis algorithms, two kinds of support vector machines, logistic regression, and discriminative canonical pattern matching (DCPM) on two open accessed datasets. All algorithms were evaluated by their classification accuracies and their generalization ability on different sizes of training sets. The study results show that DCPM has the best performance. This study shows a comprehensive comparison of different algorithms on ErrP classification, which could give guidance for the selection of ErrP algorithm.
Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.
The development and potential application of brain-computer interface (BCI) technology is closely related to the human brain, so that the ethical regulation of BCI has become an important issue attracting the consideration of society. Existing literatures have discussed the ethical norms of BCI technology from the perspectives of non-BCI developers and scientific ethics, while few discussions have been launched from the perspective of BCI developers. Therefore, there is a great need to study and discuss the ethical norms of BCI technology from the perspective of BCI developers. In this paper, we present the user-centered and non-harmful BCI technology ethics, and then discuss and look forward on them. This paper argues that human beings can cope with the ethical issues arising from BCI technology, and as BCI technology develops, its ethical norms will be improved continuously. It is expected that this paper can provide thoughts and references for the formulation of ethical norms related to BCI technology.